
Parallel Visualization on Large Clusters using MapReduce
Huy T. Vo∗

SCI Institute
University of Utah

Jonathan Bronson
SCI Institute

University of Utah

Brian Summa
SCI Institute

University of Utah

João L.D. Comba
Instituto de Informática

UFRGS, Brazil

Juliana Freire
SCI Institute

University of Utah

Bill Howe
eScience Institute

University of Washington

Valerio Pascucci
SCI Institute

University of Utah

Cláudio T. Silva
SCI Institute

University of Utah

Figure 1: A representative suite of visualization tasks being evaluated with MapReduce: isosurface extraction, volume and mesh rendering, and
mesh simplification. Our MapReduce-based renderer can produce a giga pixel rendering of a 1 billion triangle mesh in just under two minutes.
With the capability of sustaining high I/O rate with fault-tolerance, MapReduce methods can be used as tools for quickly exploring large datasets
with isosurfacing and rendering in a batch-oriented manner.

ABSTRACT

Large-scale visualization systems are typically designed to effi-
ciently “push” datasets through the graphics hardware. However,
exploratory visualization systems are increasingly expected to sup-
port scalable data manipulation, restructuring, and querying ca-
pabilities in addition to core visualization algorithms. We posit
that new emerging abstractions for parallel data processing, in par-
ticular computing clouds, can be leveraged to support large-scale
data exploration through visualization. In this paper, we take a
first step in evaluating the suitability of the MapReduce framework
to implement large-scale visualization techniques. MapReduce is
a lightweight, scalable, general-purpose parallel data processing
framework increasingly popular in the context of cloud comput-
ing. Specifically, we implement and evaluate a representative suite
of visualization tasks (mesh rendering, isosurface extraction, and
mesh simplification) as MapReduce programs, and report quan-
titative performance results applying these algorithms to realistic
datasets. For example, we perform isosurface extraction of up to
l6 isovalues for volumes composed of 27 billion voxels, simpli-
fication of meshes with 30GBs of data and subsequent rendering
with image resolutions up to 800002 pixels. Our results indicate
that the parallel scalability, ease of use, ease of access to comput-
ing resources, and fault-tolerance of MapReduce offer a promising
foundation for a combined data manipulation and data visualization
system deployed in a public cloud or a local commodity cluster.

Keywords: MapReduce, Hadoop, cloud computing, large meshes,
volume rendering, gigapixels.

∗corresponding author: hvo@sci.utah.edu

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms

1 INTRODUCTION

Cloud computing has emerged as a viable, low-cost alternative
for large-scale computing and has recently motivated industry and
academia to design new general-purpose parallel programming
frameworks [5, 8, 30, 45]. In contrast, large-scale visualization has
traditionally benefited from specialized couplings between hard-
ware and algorithms, suggesting that migration to a general-purpose
cloud platform might incur in development costs or scalability1.

The MapReduce framework [8, 9] provides a simple program-
ming model for expressing loosely-coupled parallel programs using
two serial functions, Map and Reduce. The Map function processes
a block of input producing a sequence of (key, value) pairs, while
the Reduce function processes a set of values associated with a sin-
gle key. The framework is responsible for “shuffling” the output
of the Map tasks to the appropriate Reduce task using a distributed
sort. The model is sufficiently expressive to capture a variety of al-
gorithms and high-level programming models, while allowing pro-
grammers to largely ignore the challenges of distributed computing
and focus instead on the semantics of their task. Additionally, as
implemented in the open-source platform Hadoop [14], the MapRe-
duce model has been shown to scale to hundreds or thousands of
nodes [8, 33]. MapReduce clusters can be constructed inexpen-
sively from commodity computers connected in a shared-nothing
configuration (i.e., neither memory nor storage are shared across
nodes). Such advantages motivated cloud providers to host Hadoop
and similar frameworks for processing data at scale [1, 7].

These platforms have been largely unexplored by the visualiza-
tion community, even though these trends make it apparent that our

1Scalability refers to the relative performance increase by allocating ad-
ditional resources.

community must inquire into their viability for use in large-scale vi-
sualization tasks. The conventional modus operandi of “throwing
datasets” through a (parallel) graphics pipeline relegates data ma-
nipulation, conditioning, and restructuring tasks to an offline sys-
tem and ignores their cost. As data volumes grow, these costs —
especially the cost of transferring data between a storage cluster and
a visualization cluster — begin to dominate. Cloud computing plat-
forms thus open new opportunities in that they afford both general-
purpose data processing as well as large-scale visualization.

In this paper, we take a step towards investigating the suitabil-
ity of the cloud-based infrastructure for large-scale visualization.
We observed that common visualization algorithms can be natu-
rally expressed using the MapReduce abstraction with simple im-
plementations that are highly scalable. We designed MapReduce-
based algorithms for memory-intensive visualization techniques,
and evaluated them with several experiments. Results indicate that
MapReduce offers a foundation for a combined storage, processing,
analysis, and visualization system that is capable of keeping pace
with growth in data volume (attributable to scalability and fault-
tolerance) as well as growth in application diversity (attributable to
extensibility and ease of use). Figure 1 illustrates results for isosur-
face extraction, volume and mesh rendering, and simplification.

In summary, the main contributions of the paper are:

• The design of scalable MapReduce-based algorithms for core,
memory-intensive visualization techniques: mesh and volume
rendering, isosurface extraction, and mesh simplification;

• An experimental evaluation of these algorithms using both a
multi-tenant cloud environment and a local cluster;

• A discussion on the benefits and challenges of developing vi-
sualization algorithms for the MapReduce model.

2 RELATED WORK

Recently, a new generation of systems have been introduced for
data management in the cloud, such as file systems [3, 23], storage
systems [6,10], and hosted DBMSs [29,42]. MapReduce [8,44] and
similar massively parallel processing systems (e.g.,, Clustera [11],
Dryad [20], and Hadoop [14]) along with their specialized lan-
guages [5, 30, 45]) are having a great impact on data processing in
the cloud. Despite their benefits to other fields, these systems have
not yet been applied to scientific visualization.

One of the first remote visualization applications [39] uses the
X Window System’s transport mechanism in combination with Vir-
tual Network Computing (VNC) [34] to allow remote visualiza-
tion across different platforms. IBM’s Deep Computing Visual-
ization (DCV) system [18], SGI’s OpenGL Vizserver [37] and the
Chromium Renderserver (CRRS) [32] perform hardware acceler-
ated rendering for OpenGL applications. A data management and
visualization system for managing finite element simulations in
materials science, which uses Microsoft’s SQL Server database
product coupled to IBM’s OpenDX visualization platform is de-
scribed in [15]. Indexes provide efficient access to data subsets,
and OpenDX renders the results into a manipulable scene allowing
inspection of non-trivial simulation features such as crack propaga-
tion. However, this architecture is unlikely to scale beyond a few
nodes due to its dependency on a conventional database system.

Another approach to distributed visualization is to provide access
to the virtual desktop on a remote computing system [18,24,32,37],
such that data remains on the server and only images or graphics
primitives are transmitted to the client. Systems like VisIt [24] and
ParaView [31] provide a scalable visualization and rendering back-
end that sends images to a remote client. Many scientific communi-
ties are creating shared repositories with increasingly large, curated
datasets [19, 27, 38]. To illustrate the scale of these projects, the
LSST [27] is predicted to generate 30 terabytes of raw data per

DATA ON HDFS

INPUT PARTITION

SHUFFLING

SORT IN PARALLEL

OUTPUT PARTITION

DATA ON HDFS

MAP

REDUCE REDUCE

MAP MAP MAP

Figure 2: Data transfer and communication of a MapReduce job in
Hadoop. Data blocks are assigned to several Maps, which emit key/-
value pairs that are shuffled and sorted in parallel. The Reduce step
emits one or more pairs, with results stored on the HDFS.

night for a total of 6 petabytes per year. Systems associated with
these repositories support only simple retrieval queries, leaving the
user to perform analysis and visualization independently.

3 MAPREDUCE OVERVIEW

MapReduce is a framework to process massive data on distributed
systems. It provides an abstraction that relies on two operations:

• Map: Given input, emit one or more (key, value) pairs.
• Reduce: Process all values of a given key and emit one or more

(key, value) pairs.

A MapReduce job is composed of three phases: map, shuffle and
reduce. Each dataset to be processed is partitioned into fixed-size
blocks. In the map phase, each task processes a single block and
emits zero or more (key, value) pairs. In the shuffle phase, the sys-
tem sorts the output of the map phase in parallel, grouping all values
associated with a particular key. In Hadoop, the shuffle phase oc-
curs as the data is processed by the mapper (i.e., the two phases
overlap). During execution, each mapper hashes the key of each
key/value pair into bins, where each bin is associated with a re-
ducer task and each mapper writes its output to disk to ensure fault
tolerance. In the reduce phase, each reducer processes all values
associated with a given key and emits one or more new key/value
pairs. Since Hadoop assumes that any mapper is equally likely to
produce any key, each reducer may potentially receive data from
any mapper. Figure 2 illustrates a typical MapReduce job.

MapReduce offers an abstraction that allows developers to ig-
nore the complications of distributed programming — data parti-
tioning and distribution, load balancing, fault-recovery and inter-
process communication. Hadoop is primarily run on a distributed
file system, and the Hadoop File System (HDFS) is the default
choice for deployment. Hadoop has become a popular runtime
environment for expressing workflows, SQL queries, and more
[16, 30]. These systems are becoming viable options for general
purpose large-scale data processing, and leveraging their computa-
tional power to new fields can be a very promising prospect. For ex-
ample, MapReduce systems are well-suited for in situ visualization,

which means that data visualization happens while the simulation is
running, thus avoiding costly storage and post-processing computa-
tion. There are several issues in implementing in situ visualization
systems as discussed by Ma [28]. We posit that the simplicity of the
implementation, inherent fault-tolerance, and scalability of MapRe-
duce systems make it a very appealing solution.

4 VISUALIZATION ALGORITHMS USING MAPREDUCE

We describe MapReduce algorithms for widely-used and memory-
intensive visualization techniques: mesh rendering using volumet-
ric and surface data, isosurface extraction, and mesh simplification.

4.1 Rendering
Out-of-core methods have been developed to render datasets that
are too large to fit in memory. These methods are based in a stream-
ing paradigm [12], and for this purpose the rasterization technique
is preferred due to its robustness, high parallelism and graphics
hardware implementation. We have designed a MapReduce algo-
rithm for a rasterization renderer for massive triangular and tetra-
hedral meshes. The algorithm exploits the inherent properties of
the Hadoop framework and allows the rasterization of meshes com-
posed of gigabytes in size and images with billions of pixels.

Our implementation first asks Hadoop to partitions the input “tri-
angle soup” among mappers with the constraint that each partition
must be a multiple of 36 bytes, i.e., the size of each triangle on disk,
to avoid block boundary splitting a triangle. For each triangle, the
mapper computes its projection onto the image plane and its corre-
sponding pixels. For each pixel, the mapper outputs a (key,value)
pair, with the key being the pixel location in the image plane (x,y),
and the value being the depth and color of the pixel. The MapRe-
duce framework sorts pixels into the proper order (row-major) to
construct the final image. Pixel colors emitted by the mapper that
share the same image plane location are grouped by this sorting.
The reducer emits the smallest depth value for each pixel location,
therefore accomplishing the z-buffering algorithm automatically. In
Figure 3, we give an overview of this algorithm. Mappers and re-
ducers are viewed as geometry and multi-fragment shaders, respec-
tively, in two distinct phases. This parallels a graphics hardware
pipeline and can be similarly extended to handle more advanced vi-
sualizations by custom “geometry shaders” and “fragment shaders.”
For example, in a volume renderer, each reducer sorts its fragments
and composite them, instead of a selection based on depth.

4.2 Isosurface Extraction
Isosurfaces are instrumental in visual data exploration, allowing
scientists to study function behavior in static or time-varying sce-
narios. Giving an input scalar volume, the core of extraction is the
computation of the isosurface as a collection of simplicial primi-
tives that can be rendered using common graphical methods. Our
MapReduce-based algorithm for isosurface extraction is based on
the Marching Cubes algorithm [26], which is the de-facto standard
for isosurface extraction due to its efficiency and robustness.

Partitioning relies on the natural representation of a scalar vol-
ume as a collection of 2D slices. The Hadoop distributed file system
uses this strategy to partition data into blocks for each mapper, but
imposes some constraints. First, each partition must contain com-
plete slices. Second, it allows the overlap by one slice in only one
direction to account for triangles spanning across partitions. Al-
though it may result in duplication of input data, there is no dupli-
cation of output triangles since this overlap only occurs in one di-
mension. In practice, the duplication of input data is small and has
no significant effect on the performance of the system. Each map-
per computes the triangles of several isosurfaces using the March-
ing Cubes algorithm and emits a (key,value) pair for each isovalue.
The key is the isovalue and the value is the triangle data for the
each cube in binary format. The reducer receives the data sorted

and binned by isovalue, thus, the reduce stage only needs to act as
a pass-through, writing the isosurface as a triangle soup to file.

4.3 Mesh Simplification
Despite advances in out-of-core methods for rendering structured
or unstructured meshes, it may still not feasible to use the full res-
olution mesh. Several mesh simplification techniques have been
proposed [13, 35, 43]. Memory usage is a key aspect of this prob-
lem, since techniques often require storage proportional to the size
of the input or output mesh. An alternative is given by the OoCSx
(improved Out-of-Core Simplification) algorithm [25], which de-
couples this relationship and allows the simplification of meshes of
arbitrary sizes. This is accomplished by superimposing a regular
grid over the underlying mesh with associations between grid cells
and vertices: every grid cell that contains a vertex of the input mesh
must also contain a vertex on the output mesh, and every cell must
have only one representative vertex. The problem is broken into
finding all triangles that span three unique cells, and then finding
an optimum representative vertex for each cell. Only a linear pass
through the triangle mesh to hash each vertex is needed to find its
representative bin before the output of all triangle indices.

The linear pass of OoCSx is not suitable for a parallel implemen-
tation. due to the minimal error criteria for optimal representative
vertices. We use two MapReduce jobs to implement the algorithm
since it requires two sorting phases. The first Map phase bins each
vertex into a regular grid to ensure that all triangles contributing
vertices to a particular bin arrive on the same node in the Reduce
phase. It also computes the quadric measure vector associated with
the contributing triangle. For each triangle, three (key, value) pairs
are emitted, one for each vertex. The key is the the bin coordi-
nate that contains the vertex, and the value is a concatenation of the
quadric measure vector with the three indices of the triangle.

The first Reduce phase receives the same (key, value) pair from
the Map phase, but sorted and grouped by key. It reads each unique
key (bin), and uses the quadric measures of all triangles falling
into that bin to compute the representative vertex. If the indices
of all vertices of a triangle contributing to a representative vertex
are unique, the Reduce phase emits the indexed triangle as key, and
the current grid cell and vertex. Thus, across all reducers, there
is exactly three (key,value) pairs with the same key (triangle), each
storing a different representative vertex and corresponding bin as its
value. Since multiple Reduce phases are currently not supported,
we use a second MapReduce job to complete the dereference. The
second Map reads and emits the data output from the first Reduce
job. Keyed on triangle index, the second Reduce receives the exact
three bin-vertex pairs, and emit as final output the simplified mesh.

5 EXPERIMENTAL ANALYSIS

An in-depth analysis of the algorithms was presented in the pre-
vious section. We designed our experiments to evaluate, for each
algorithm, its ability to scale up and down, as well as the overhead
introduced by Hadoop. The first series of tests shows the cost of
data transfer through a MapReduce job without any computation,
followed by a detailed evaluation of each individual algorithm.

By default, the number of mappers that Hadoop launches for a
job is a multiple of the number of data blocks, without exceeding
the actual number of blocks on its HDFS (counting all replications).
On the other hand, the number of reduce tasks can be specified. To
simplify comparison, in our tests we maximize the number of re-
ducers to the system capacity while keeping its ratio to the number
of mappers equal to 1. The number of mappers and reducers is
always equal whenever the number of input data blocks permits.

Tests were performed on two Hadoop-based systems: a local
cluster and the NSF CLuE cluster managed by IBM [7]. The local
cluster consists of 60 nodes, each with two quad-core Intel Xeon
Nehalem 2.6GHz processors, 24GB of memory and a 320GB disk.

Map

Input Triangle Soup

Reduce

For each key (x, y) :
 Find minimum z
 Emit (x, y, color)

For Each Triangle, T:
 Rasterize(T):

For each pixel:
 Emit(x, y, z, color)

Output Image

Figure 3: MapReduce rasterization. The map phase rasterize each triangle and emits rasterized fragments, i.e. the pixel coordinates as key, and
its color and depth as value. The reducer composites fragments for each location, e.g. pick the smallest depth one for surface rendering.

The CLuE cluster consists of 410 nodes each with two single-core
Intel Xeon 2.8GHz processors, 4GB of memory and a 400GB disk.
While still a valuable resource for research, the CLuE hardware
is outdated if compared to modern clusters, since it was originally
built in 2004. Thus, we mostly utilize the performance numbers
from the CLuE cluster as a way to validate and/or compare with
our results on the local cluster. Since the CLuE cluster is a shared
resource among multiple universities, there is currently no way to
run experiments in isolation. We made sure to run all of our exper-
iments at dead hours to minimize the interference from other jobs.
HDFS files were stored in 64MB blocks with 3 replications.

5.1 MapReduce Baseline

To evaluate the cost incurred solely from streaming data through
the system, several baseline tests were performed. For our scal-
ing tests, we have evaluated our algorithms’ performance only for
weak-scaling. (i.e., scaling the number of processors with a fixed
data size per processor). This was chosen over strong scaling (i.e.,
scaling the number of processors with a fixed total data size) since
the latter would require changing a data blocksize to adjust the num-
ber of mappers appropriately. The Hadoop/HDFS is known for
degraded performance for data with too large or small blocksizes
depending on job complexity [40], therefore strong scaling is cur-
rently not a good indicator of performance in Hadoop. The weak-
scaling experiments vary data size against task capacity and propor-
tionally change the number of mappers and reducers. An algorithm
that has proper weak scaling should maintain a constant runtime. To
avoid biasing results by our optimization schemes, we use the de-
fault MapReduce job, with a trivial record reader and writer. Data
is stored in binary format and split into 64-byte records, with 16
bytes reserved for the key. Map and reduce functions pass the input
directly to the output, and are the simplest possible jobs such that
the performance is disk I/O and network transfer bounded.

The top table in Figure 4 shows the average cost for map, shuf-
fle and reduce tasks respectively in the local cluster. The last two
columns depict the overall disk I/O throughput and data throughput
for a particular job. I/O rates were computed by dividing the to-
tal number of disk reads and writes including temporary files over
the total time, while data rates represent how much input data pass
through the job in a second. For map tasks, Hadoop was able to
keep the runtime constant, since input files are read in sequence
on each node and directed to appropriate mappers. In the reducing
step, even though the amount of data is the same as to the map phase
and each node write data to its local disk, there is also a local ex-
ternal sorting that incurs in overhead. Nevertheless, both runtimes
are still considerably constant, except for the jump from 64GB to
128GB. At this point, the number of reducers guarantees each node
has to host at least two reduce tasks if distributed properly, there-
fore each disk now has double the I/O and seek operations. This can
be seen in the disk I/O rates, where the throughput is optimal at 64
tasks on the local cluster with 60 disks and drops while maintaining
a relatively high speed for the larger number of tasks.

The shuffle phase of Hadoop is where weak scaling is not linear.
This accounts for the data transfer between map and reduce phases

WEAK-SCALING OF DATASIZE VS. THE NUMBER OF TASKS (on Cluster)

Datasize #Maps #Reduces
Map
Time

Shuffle
Time

Reduce
Time

Total
 Time I/O Rate Date Rate

1GB 16 1 7s 18s 27s 63s 84 MB/s 16 MB/s
2GB 32 2 8s 18s 27s 66s 161 MB/s 31 MB/s
4GB 64 4 9s 24s 30s 75s 283 MB/s 55 MB/s
8GB 128 8 10s 26s 29s 78s 545 MB/s 105 MB/s

16GB 256 16 10s 32s 29s 90s 944 MB/s 182 MB/s
32GB 512 32 12s 56s 32s 130s 1308 MB/s 252 MB/s
64GB 1024 64 11s 69s 30s 153s 2222 MB/s 428 MB/s

128GB 2048 128 13s 146s 57s 320s 2125 MB/s 410 MB/s

HADOOP OVERHEAD TIME (on Cluster) WEAK-SCALING (on CLuE)

#Maps #Reduces Map Only Total Datasize
Total
 Time I/O Rate Data Rate

16 1 15s 30s 1GB 971s 5 MB/s 1 MB/s
32 2 15s 30s 2GB 946s 11 MB/s 2 MB/s
64 4 15s 30s 4GB 986s 22 MB/s 4 MB/s

128 8 15s 30s 8GB 976s 44 MB/s 8 MB/s
256 16 15s 30s 16GB 1059s 80 MB/s 15 MB/s
512 32 15s 33s

1024 64 15s 35s
2048 128 15s 36s

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

($!"#

(%!"#

(&!"#

()*# $)*# %)*# ')*# (&)*# +$)*# &%)*# ($')*#

!
"#
$%
&#
'(
)*

#'

+%,%-).#'

/%0112'(%-3'425),'

,-.#/012# 34562#/012# 728592#/012#

Figure 4: Hadoop baseline test evaluates data transfer costs. In the
local cluster we achieve data transfer rates up to 428MB/s

of a job along with sorting. In Hadoop each mapper is likely to
contribute a portion of data required by each reducer, and therefore
is not expected to scale well. The plot in Figure 4 illustrates the
breakdown of the three phases. The Hadoop Overhead Time table
shows (only) the overhead of communication across the map and
reduce phases. Each phase takes about 15 seconds to start on our
local cluster. We also include weak-scaling results for the CLuE
cluster for comparison. As expected, the I/O rates are considerably
lower than the local performance, due to the age of the system and
shared utilization. From the weak scaling tests we conclude that the
MapReduce model can be robust when the number of nodes scales
with the data size. Little cost is incurred for using more input data,
and the effective transfer rates scale proportionally to the input data
size. However, in order to ensure fault tolerance, disk I/O is heavily
involved and could bound the overall performance.

(a) Opaque (b) Translucent (c) Color-mapped

 WEAK SCALING (RESOLUTION)
St. MATTHEW (13 GB) ATLAS (18 GB)

Resolution #M/R CLuE Cluster File #M/R CLuE Cluster File
time time Written time time Written

1.5 MP 256/256 1min 54s 46s 33MB 273/273 1min 55s 46s 41MB
6 MP 256/256 1min 42s 46s 147MB 273/273 2min 11s 46s 104MB

25 MP 256/256 1min 47s 46s 583MB 273/273 2min 12s 46s 412MB
100 MP 256/256 1min 40s 46s 2.3GB 273/273 2min 12s 46s 1.6GB
400 MP 256/256 2min 04s 46s 10.9GB 273/273 2min 27s 47s 5.5GB
1.6 GP 256/256 3min 12s 1min08s 53.14GB 273/273 3min 55s 55s 37.8GB
6.4 GP 256/256 9min 50s 2min55s 213GB 273/273 10min 30s 1min58s 151.8GB

 WEAK SCALING (RESOLUTION AND REDUCE)
St. MATTHEW (13 GB) ATLAS (18 GB)

Resolution CLuE 256M Cluster 480M CLuE 256M Cluster 480M
#R time #R time #R time #R time

1.5 MP 4 1min 13s 8 46s 4 1min 18s 8 46s
6 MP 8 1min 18s 15 46s 8 1min 19s 15 45s

25 MP 16 1min 18s 30 46s 16 1min 51s 30 46s
100 MP 32 2min 04s 60 47s 32 1min 52s 60 47s
400 MP 64 2min 04s 120 49s 64 2min 34s 120 46s
1.6 GP 128 4min 45s 240 1min06s 128 5min 06s 240 55s
6.4 GP 256 9min 50s 480 2min14s 256 10min 30s 480 1min41s

6 MP 25 MP 100 MP 1.6 GP 6.4 GP
Time 59s 59s 59s 1m 40s 1m 47s

DAVID (1 Billion Triangles, 30GB)
400 MP

1m 1s
1.5 MP

59s

Figure 5: Rendering results for the David statue with different com-
position stage (a) nearest depth, (b) glass multi-fragment effects [2]
and (c) color-mapped glass effect. The model with 1 billion triangles
was rendered to a 1 gigapixel canvas in 1 minute and 40 seconds.

5.2 Rendering

Performance of the rasterization algorithm depends on the output
resolution, camera parameters and geometry size. The impact of
geometry and resolution is proportional to the number of triangles
to be rasterized and fragments generated. The impact of camera pa-
rameters is hard to estimate since pixels may receive none or mul-
tiple fragments depending on the camera position. Hence, reducers
may receive none or several fragments to compute depth ordering.

Figure 5(a,b,c) shows rendering results for the Digital Michelan-
gelo Project’s David [4] model consisting of 933 million triangles
with different composition algorithms: picking the nearest depth
fragment, glass multi-fragment effects [2] and color-mapped glass
effects. To reduce aliasing effects, our renderer also performs su-
persampling with an 4x4 kernel, i.e., actually rendering to a 16
times larger canvas.

Model # Tetrahedra #Triangles Time #Fragments Read Write
Spx 0.8 millions 1.6 millions 3m 29s 9.8 billions 320 GB 473 GB

Fighter 1.4 millions 2.8 millions 2m 20s 5.3 billions 172 GB 254 GB
Sf1 14 millions 28 millions 6m 53s 16.8 billions 545 GB 807 GB

Bullet 36 millions 73 millions 4m19s 12.7 billions 412 GB 610 GB

Model Grid Size #Triangles Time #Fragments Read Write
RT27 3072 3 floats 161 billions 19m 20s 22.2 billions 1.2 TB 1.6 TB

TETRAHEDRAL MESH VOLUME RENDERING (on Cluster)

STRUCTURED GRID VOLUME RENDERING (on Cluster)

Figure 6: Volume rendering of the Rayleigh-Taylor instability dataset
consisting of 27 billion voxels using a 100MP image. Table shows
volume rendering statistics for tetrahedral meshes as well.

The tables in Figure 5 reports weak scaling tests with run times
and temporary disk usage. For the CLuE cluster, the cost for ren-
dering images of 100MP or less is insignificant compared to the
Hadoop overhead. For our local cluster, this threshold is more than
1GP. For images of this size, the cluster is stretched to its limit and
performance is limited by the amount of data written to disk. There
is a significant increase in the data size due to the large amount of
temporary caching by the system due to insufficient buffer space
for the shuffling phase. The last table shows the timings to render
the David model up to billions of pixels. Compared to [22], a ray
tracer, which took 30 hours to complete a frame [36], our MapRe-
duce approach is considerably faster with just under 2 minutes.

Figure 6 shows results of a volume rendering pipeline modified
from our surface rendering pipeline. This volume renderer works
with both tetrahedral and structured data. Input meshes are broken
down into a triangle soup composed of element faces. The reduce
phase is modified to perform color, opacity mapping and composit-
ing of the fragments. The accompanying table shows results for a
variety of additional meshes. As also shown in the table, for tetra-
hedral meshes, the most time-consuming image to render at 100MP
is not the largest dataset (Bullet) but the earthquake dataset (SF1).
This is due to the many large (and flat) tetrahedra that define empty
regions at the bottom of the model. Scalar values of these triangles
rarely contribute to the final image, but generate a large number of
fragments which causes a more expensive shuffle phase.

Figure 6 also shows the rendering of the Rayleigh-Taylor insta-
bility dataset consisting of 108GB of structured data. The volume
renderer proposed here is a general implementation that is modi-
fied from our surface renderer. Its main purpose is to demonstrate
the flexibility of our approach. It simply splits each voxel into 12
triangles to be rasterized and composited independently. However,
this results in a large amount of primitives to be rasterized for struc-

tured grid. Comparing to a structured-grid specific approach [17]
that can volume render a similar dataset in 22 seconds using 1728
cores, ours is slower with roughly 20 minutes on 256 cores. How-
ever, we are in fact rendering 161 billion triangles in this case.

5.3 Isosurface Extraction

We tested the isosurface MapReduce algorithm on two datasets:
a small ppm Richtmyer-Meshkov instability simulation volume
(7.6GB) and another larger simulation, Rayleigh-Taylor dataset
(108GB). Since our baseline testing has shown that the amount data
produced can effect Hadoop’s performance, we performed tests that
varied the number of isosurfaces generated in a single job, since this
can have a drastic effect on the amount of data being produced. For
few isosurfaces, we expect a small number of triangles to be pro-
duced. Conversely, for many isosurfaces, more data will be output
to disk than was used for input. We keep the number of maps con-
stant at 256, as this is the largest power-of-two we can use without
pigeon holing more than 1 mapper to a node of the CLuE cluster.

In the extraction of dozens of isosurfaces (as part of parameter
exploration) we observed that data output increases proportionally
to runtime. Jobs are relatively fast for the standard case of fewer
isosurfaces, since input and output data are partitioned evenly to
mappers and reducers, thus the amount of disk I/O for input and
output is relatively small (e.g., approximately 32MB per Mapper).
The runtime is mostly affected by the shuffling phase, where tri-
angles emitted from mappers exceed the available buffer and are
sorted out-of-core before being transferred to the reducers. The
performance of this phase depends on the amount of temporary disk
I/O used when the mapper runs out of in-core buffer space.

The Written column in the table of Figure 7 denotes the amount
of temporary data produced (not the HDFS output). For both
datasets, the algorithm runs quite fast up to 8 isosurfaces, close
to Hadoop’s overhead. For 16 isosurfaces, the disk I/O starts to
increase abruptly causing the algorithm to slow down. This in-
crease reveals the amount of temporary disk storage needed for the
Mappers to sort the data. Figure 7 also shows isosurfaces for the
Rayleigh-Taylor dataset. The rendering combined the map task of
our isosurface extraction with the map and reduce job of our sur-
face rendering described in Section 5.2. This implementation yields
comparable performance to a hand-tuned implementation [21] for
extracting isosurfaces from the same datasets: 250 seconds with 64
cores [21] vs. 39 seconds with 256 cores in ours.

5.4 Mesh Simplification

To analyze the out-of-core simplification algorithm in the MapRe-
duce model, we use two large triangle meshes as input: the Atlas
statue (18GB) and the St Matthew statue (13GB) from the Digital
Michelangelo Project at Stanford University. In these tests, we are
interested in seeing the effects of scaling the simplifying grid size.
The amount of work done in the Map phase should be very con-
sistent, as each triangle must always compute a quadric measure
vector and bin its three vertices. Smaller grid sizes force more ver-
tices to coincide in any particular bin, thus changing the grouping
and potentially reducing the parallelism in the Reduce phase.

However, the decrease in performance should be amortized by
the decreased output of the Reduce phase, as fewer triangles are
generated. In the tables of Figure 8 we observe that this is exactly
what occurs. Since our method must be a two pass algorithm in
Hadoop, we have included the runtimes for both jobs (Job 1 and
Job 2). Rendered images of simplified models of the St Matthew
statue are also shown in Figure 9 with the grid sizes varying from
83 to 10243. Decimation rates for these results are all under 5% and
they were all rendered using the renderer proposed in Section 5.2.

Total Time Written Total Time Written
1 30s 1.78GB 39s 8.4GB
2 31s 5.9GB 39s 11.1GB
4 45s 22.5GB 1m 5s 62.0GB
8 45s 52.7GB 1m 25s 155.9GB
16 1m 26s 112.4GB 2m 50s 336.6GB

Richtmyer-Meshkov (7.6GB) Rayleigh-Taylor (108GB)
#Iso

Figure 7: Isosurface results for varying isovalues using the MapRe-
duce framework for the Richtmyer-Meshkov and Rayleigh-Taylor in-
stability datasets in a local cluster with 256 cores enabled.

Job 1 Job 2 Job 1 Job 2 Job 1 Job 2 Job 1 Job 2
8 3 5m 45s 52s 58s 56s 22 KB 5m 45s 52s 54s 55s 23 KB
16 3 3m 54s 49s 58s 55s 98 KB 3m 54s 49s 54s 54s 105 KB
32 3 3m 51s 49s 55s 54s 392 KB 3m 51s 49s 51s 52s 450 KB
64 3 3m 40s 49s 57s 54s 1.6 MB 3m 40s 49s 55s 55s 1.9 MB
128 3 4m 12s 49s 55s 58s 6.4 MB 4m 12s 49s 52s 52s 7.5 MB
256 3 3m 50s 49s 55s 55s 26 MB 3m 50s 49s 55s 55s 30 MB

CLuE Time Cluster Time
 ATLAS (18 GB)

CLuE Time Cluster Time
Size

Output
Size

Output
Size

 St MATTHEW (13 GB)

Figure 8: Simplification algorithm uses 2 map-reduce jobs . The local
cluster processes both datasets in roughly 55s per job.

6 DISCUSSION

In this section, we discuss some of the “lessons learned” from our
experience with MapReduce and Hadoop. For users of visualiza-
tion techniques, it is difficult to know when the results or workload
will push beyond the cluster limits and severely increase runtimes.
In these cases, increasing the number of maps and reduces may
result in a lower memory foot print, yet more balancing, task dis-
tribution across all computing nodes. While nodes can run multiple
tasks, we find that increasing the number of nodes in proportion
to data size provides the most reliable and consistent scalability,
suggesting that the overhead to manage additional nodes is not pro-
hibitively expensive.

The results from our exploratory implementations are encourag-
ing and match the scalability we expected, up to a limit. When the
size of the output data is unpredictable, as in the case of isosur-
face extraction, memory requirements can quickly exhaust avail-
able resources, leading to disk buffering and ultimately increasing
runtime. Scalability, in our experience, is only achieved for data
reductive tasks — tasks for which the output is smaller than the
input. Most visualization tasks satisfy this property, since they typ-
ically render (or generate) data that is smaller than the input mesh or

(a) 83 (b) 163 (c) 323 (d) 643 (e) 1283 (f) 2563 (g) 5123 (h) 10243

Figure 9: Simplified meshes of the St. Matthew statue using volumes from 83 to 10243.

volume. It should also be pointed out that this cost is insignificant
when compared to today’s standard practice of transferring data to
a client, and running a local serial or parallel algorithm. Indeed, the
cost of transferring the data to a local server alone dwarfs the cost
of any such MapReduce job.

For those interested in developing visualization algorithms for
MapReduce systems, our experience has shown that even naı̈ve
implementations can lead to acceptable results. Implementing
MapReduce algorithms was relatively simple. However, as with
any highly-parallel system, optimization can be painstaking. In the
case of MapReduce, we found that the setup and tuning of the clus-
ter itself was just as important, if not more important, than using
the right data format, compressor, or splitting scheme.

To analyze the suitability of existing algorithms to the MapRe-
duce model, attention should be paid to where and how often sorting
is required. As the model only allows a single sort phase per job,
multi-pass algorithms can incur on significant overhead when trans-
lated naı̈vely into MapReduce. Specifically, a MapReduce imple-
mentation will rarely be competitive with state-of-the-art methods
in terms of raw performance, but the simplicity and generality of
the programming model is what delivers scalability and extensibil-
ity. Furthermore, the degree of parallelism in the Reduce phase is
given by the intended output of the algorithm and data distribution
from the Map phase. Also, the hashing method used might have a
dramatic effect on the algorithm performance.

Below we summarize our conclusions using the Hadoop system:

• Results from our scaling tests show Hadoop alone scales well,
even without introducing optimization techniques;

• Considerations about the visualization output size are very
important. Visualization techniques should decrease or keep
relatively constant the size of the data in the pipeline rather
than increase it. MapReduce was not designed to handle large
intermediate datasets, and performs poorly in this context;

• From a qualitative standpoint, we found the MapReduce
model easy to work with and implement our solutions. Opti-
mization, in terms of compression and data reader/writers re-
quired thought and experimentation. Configuring job param-
eters and cluster settings for optimal performance was chal-
lenging. We feel that this complexity is inherent to a large
distributed environment, and therefore is acceptable. Also, it
can potentially be performed once per cluster, and the cost can
be amortized over many MapReduce jobs;

• The inability to chain jobs makes multi-job algorithms such
as the mesh simplification slightly cumbersome to execute,
and more difficult to analyze. Projects such as Pig [30] and
Hive [41] that offer a high-level yet extensible language on
top of MapReduce are promising in this regard;

• The Hadoop community could greatly benefit from better
progress reporting. Uneven distribution of data across reduc-
ers may result in display of near completion (e.g., 98%) when
in fact the bulk of the work remains to be completed. This is
problematic if the user does not know a priori what a good re-
ducer number should be, and arbitrarily chooses a high value;

• While at any particular time job runtimes are fairly consistent,
they vary as a whole from day to day. This is most likely due
to the HDFS state and movement of replicated data. Being
aware of these effects is important to make meaningful com-
parisons of performance results. On that note, all data within
any one table was generated within a short time span.

7 CONCLUSIONS AND FUTURE WORK

The analysis performed in this paper has shown that the MapRe-
duce model provides is a suitable alternative to support large-scale
exploratory visualization. The fact that data transfer alone is more
expensive than running such a job in-situ is sufficient justification,
and will become more evident as datasets grow in size. The avail-
ability of a core set of visualization tools for MapReduce systems
will allow faster feedback and learning from new and large datasets.
Additionally, as these systems continue to evolve, it is important for
the visualization community to periodically re-evaluate their suit-
ability. We provide a baseline for such a comparative analysis.

We have shown how three visualization techniques can be
adapted to MapReduce. Clearly, many additional methods can
be adapted in similar ways, in particular memory-insensitive tech-
niques or inherently parallel techniques. What remains to be in-
vestigated is how to combine visualization primitives with conven-
tional data management, query, and processing algorithms to con-
struct a comprehensive scalable visual analytics platform.

8 ACKNOWLEDGEMENTS

We would like to thank Marc Levoy at Stanford University
for the David model and Bill Cabot, Andy Cook, and Paul
Miller at LLNL for the Rayleigh-Taylor dataset. This work
was supported in part by the National Science Foundation (CCF-
08560, CNS-0751152, IIS-0844572, IIS-0904631, IIS-0906379,

and CCF-0702817), the Department of Energy, CNPq (processes
200498/2010-0, 569239/2008-7, and 491034/2008-3), IBM Fac-
ulty Awards and NVIDIA Fellowships. This work was also per-
formed under the auspices of the U.S. Department of Energy by the
University of Utah under contract DE-SC0001922 and DE-FC02-
06ER25781 and by Lawrence Livermore National Laboratory un-
der contract DE-AC52-07NA27344, LLNL-JRNL-453051.

REFERENCES

[1] Amazon web services - elastic mapreduce. http://aws.amazon.

com/elasticmapreduce/.
[2] L. Bavoil, S. P. Callahan, A. Lefohn, J. a. L. D. Comba, and C. T. Silva.

Multi-fragment effects on the gpu using the k-buffer. In Proceedings
of the 2007 symposium on Interactive 3D graphics and games, I3D
’07, pages 97–104, New York, NY, USA, 2007. ACM.

[3] D. Borthakur. The Hadoop distributed file system: Architecture
and design. http://lucene.apache.org/hadoop/hdfs_design.
pdf, 2007.

[4] B. Brown and S. Rusinkiewicz. Global non-rigid alignment of 3-D
scans. ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3),
Aug. 2007.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel process-
ing of massive data sets. In Proc. of the 34th Int. Conf. on Very Large
DataBases (VLDB), pages 1265–1276, 2008.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed
storage system for structured data. In Proc. of the 7th USENIX Symp.
on Operating Systems Design & Implementation (OSDI), 2006.

[7] Nsf cluster exploratory (nsf08560). http://www.nsf.gov/pubs/

2008/nsf08560/nsf08560.htm.
[8] J. Dean and S. Ghemawat. MapReduce: simplified data processing

on large clusters. In Proc. of the 6th USENIX Symp. on Operating
Systems Design & Implementation (OSDI), 2004.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. CACM, 51(1):107–113, 2008.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proc. of the 21st
ACM Symp. on Operating Systems Principles (SOSP), pages 205–220,
2007.

[11] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton, J. Royalty,
S. Shankar, and A. Krioukov. Clustera: an integrated computation
and data management system. In Proc. of the 34th Int. Conf. on Very
Large DataBases (VLDB), pages 28–41, 2008.

[12] R. Farias and C. T. Silva. Out-of-core rendering of large, unstructured
grids. IEEE Comput. Graph. Appl., 21(4):42–50, 2001.

[13] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. In SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pages
209–216, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[14] Hadoop. http://hadoop.apache.org/.
[15] G. Heber and J. Gray. Supporting finite element analysis with a rela-

tional database backend; part 1: There is life beyond files. Technical
report, Microsoft MSR-TR-2005-49, April 2005.

[16] Hive. http://hadoop.apache.org/hive/. Accessed March 7,
2010.

[17] M. Howison, W. Bethel, and H. Childs. Mpi-hybrid parallelism for
volume rendering on large, multi-core systems. In EG Symposium on
Parallel Graphics and Visualization (EGPGV’10), 2010.

[18] IBM Systems and Technology Group. IBM Deep Computing. Tech-
nical report, IBM, 2005.

[19] Incorporated Research Institutions for Seismology (IRIS). http://

www.iris.edu/.
[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-

tributed data-parallel programs from sequential building blocks. In
Proc. of the European Conference on Computer Systems (EuroSys),
pages 59–72, 2007.

[21] M. Isenburg, P. Lindstrom, and H. Childs. Parallel and streaming gen-
eration of ghost data for structured grids. Computer Graphics and
Applications, IEEE, 30(3):32–44, 2010.

[22] T. Ize, C. Brownlee, and C. Hansen. Real-time ray tracer for visu-
alizing massive models on a cluster. In EG Symposium on Parallel
Graphics and Visualization (EGPGV’11), 2011.

[23] Kosmix Corp. Kosmos distributed file system (kfs). http://

kosmosfs.sourceforge.net, 2007.
[24] Lawrence Livermore National Laboratory. VisIt: Visualize It in Par-

allel Visualization Application. https://wci.llnl.gov/codes/

visit [29 March 2008].
[25] P. Lindstrom and C. T. Silva. A memory insensitive technique for

large model simplification. In VIS ’01: Proceedings of the conference
on Visualization ’01, pages 121–126, Washington, DC, USA, 2001.
IEEE Computer Society.

[26] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163–169,
1987.

[27] Large Synoptic Survey Telescope. http://www.lsst.org/.
[28] K.-L. Ma. In situ visualization at extreme scale: Challenges and op-

portunities. Computer Graphics and Applications, IEEE, 29(6):14 –
19, nov.-dec. 2009.

[29] Azure Services Platform - SQL Data Services. http://www.

microsoft.com/azure/data.mspx.
[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

latin: a not-so-foreign language for data processing. In SIGMOD’08:
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
1099–1110, 2008.

[31] Paraview. http://www.paraview.org [29 March 2008].
[32] B. Paul, S. Ahern, E. W. Bethel, E. Brugger, R. Cook, J. Daniel,

K. Lewis, J. Owen, and D. Southard. Chromium Renderserver: Scal-
able and Open Remote Rendering Infrastructure. IEEE Transac-
tions on Visualization and Computer Graphics, 14(3), May/June 2008.
LBNL-63693.

[33] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. R. Mad-
den, and M. Stonebraker. A comparison of approaches to large scale
data analysis. In SIGMOD, Providence, Rhode Island, USA, 2009.

[34] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual
network computing. IEEE Internet Computing, 2(1):33–38, 1998.

[35] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. In SIGGRAPH ’92: Proceedings of the 19th annual
conference on Computer graphics and interactive techniques, pages
65–70, New York, NY, USA, 1992. ACM.

[36] U. o. U. SCI Institute. One billion polygons to billions of pixels.
http://www.sci.utah.edu/news/60/431-visus.html.

[37] Silicon Graphics Inc. OpenGL vizserver. http://www.sgi.com/

products/software/vizserver.
[38] Sloan Digital Sky Survey. http://cas.sdss.org.
[39] S. Stegmaier, M. Magallón, and T. Ertl. A generic solution for

hardware-accelerated remote visualization. In VISSYM ’02: Proceed-
ings of the symposium on Data Visualisation 2002, pages 87–ff, Aire-
la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[40] I. Technologies. Hadoop performance tuning - white paper.
[41] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,

H. Liu, P. Wyckoff, and R. Murthy. Hive - a warehousing solution
over a map-reduce framework. PVLDB, 2(2):1626–1629, 2009.

[42] Yahoo! Reasearch. PNUTS - Platform for Nimble Universal Table
Storage. http://research.yahoo.com/node/212.

[43] J. Yan, P. Shi, and D. Zhang. Mesh simplification with hierarchical
shape analysis and iterative edge contraction. IEEE Transactions on
Visualization and Computer Graphics, 10(2):142–151, 2004.

[44] H. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In SIG-
MOD’07: Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 1029–1040, 2007.

[45] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proc. of the
8th USENIX Symp. on Operating Systems Design & Implementation
(OSDI), 2008.

