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Abstract

Gigapixel panoramas are an increasingly popular digital image application. They are often created as a mosaic
of smaller images composited into a larger single image. The mosaic acquisition can occur over many hours
causing the individual images to differ in exposure and lighting conditions. Therefore, to give the appearance of a
single seamless image a blending operation is necessary. The quality of this blending depends on the magnitude
of discontinuity along the boundaries between the images. Often image boundaries, or seams, are first computed
to minimize this transition. Current techniques based on the multi-labeling Graph Cuts method are too slow and
memory intensive for panoramas many gigapixels in size. In this paper we present a multithreaded out-of-core
seam computing technique that is fast, has a small memory footprint, and gives near perfect scaling up to the
number of physical cores of our test system. With this method the time required to compute image boundaries for
gigapixel imagery improves from many hours (or even days) to just a few minutes on commodity hardware while

still producing boundaries with energy that is on-par, if not better, than Graph Cuts.

Categories and Subject Descriptors (according to ACM CCS):

1.3.3 [Computer Graphics]: Picture/Image

Generation—I.3.6 [Computer Graphics]: Methodology and Techniques—

1. Introduction

Panoramic images, composed as a mosaic of many smaller
images, are an increasingly popular digital photography ap-
plication. These images can range from a few megapixels to
many gigapixels in size and can contain hundreds or thou-
sands of individual images. Recently, the trend has been to-
wards gigapixel sized panoramas due to the availability of
high resolution cameras and inexpensive robots for auto-
matic capture.

The robots capture the individual images one by one in
a grid pattern and typically take a few seconds per image.
Therefore, the capture of gigapixel sized panoramas can
take many hours. This results in each image having different
lighting and exposure conditions. The resulting panorama is
an unappealing patchwork with visible transitions between
the images. To combat this, blending operations are per-
formed to give the appearance of a single seamless image.
The quality of blending depends on the magnitude of discon-
tinuity along the transition boundaries. Therefore, another
step is usually performed where new boundaries between
the images are computed such that the magnitude of transi-
tion between them is minimized. These boundaries are often
called as seams.
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Seam computation at its core is determining which source
image provides the value for each pixel in regions where
these images overlap. The most widely used technique for
this problem is the Graph Cuts algorithm [BVZ01, BK04,
KZ04]. This technique computes a k-labeling to the nodes
of a graph in order to minimize an energy function defined
on the nodes and edges of the graph. For the seam com-
putation problem, the panorama is represented as a graph
where the nodes represent the pixels, the edges connect
a pixel to its neighbors, and labels represent the source
images that provide the values for the corresponding pix-
els [KSE*03, ADA*04]. The energy function is typically
pixel based and is used to minimize the color or color gradi-
ent variations between images. Graph Cuts is only an ap-
proximation since the globally optimal solution for more
than two labels is known to be NP-hard [BVZ01].

Graph Cuts is not suitable for gigapixel sized images due
to its high computational cost and memory requirements.
A common technique employed to reduce both the mem-
ory and computational cost of Graph Cuts is to use a hierar-
chical scheme [LSGX05,AZP*05]. Hierarchical Graph Cuts
has only been shown to produce good results for two to three
levels [AZP*05] and can be seen often in practice as shown
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Figure 1: An example case where a deep hierarchy for Hier-
archical Graph Cuts produces poor results. A car that ap-
pears in only one of the input images (top) causes a re-
gion with high energy which a pixel based energy will avoid.
The results for up to 3 levels are good. At 4 levels, in the
coarse solution, the car is small enough for the seam to pass
through it. The dilation parameter (10 pixels in the typical
case) is not large enough to exit this local minima in the re-
finement stages.

in Figure 1. In this figure, at 4 levels the dynamic scene el-
ement is small enough in the coarse solution for the seam
to simply pass through it. The dilatation, which is the re-
gion around the upsampled coarse seams where refinement
is performed, is not large enough (10 pixels is typical) to
allow the seam to exit this local minima. Larger dilatation
may help in this case although at an increased computational
and memory cost. This interplay between a shallow hierar-
chy and dilatation parameters makes the technique inher-
ently unscalable and not sufficient for direct application to
gigapixel sized panoramas. A sliding window based out-of-
core technique is presented in [KUDCO7] where the Graph
Cuts algorithm is applied over a window of each individual
image of the panorama. This technique has been shown to
work on gigapixel sized panoramas but it is sequential and
is still computationally and memory intensive, even over the
domains of individual images.

For faster seam computation, we look to the recently
introduced alternative to Graph Cuts: Panorama Weav-
ing [STP12]. This work presented a novel technique to com-
bine independently computed pairwise seams into a global
seam network. It has been shown to be fast, light-weight
and easily parallelized. However, it is targeted towards in-
teractive editing of panorama seams and as such is an in-
core technique. Therefore, it has only been shown to work
on panoramas of less than 100 megapixels.

In this work, we introduce a scalable version of the
Panorama Weaving technique. In doing this, we present the
first truly out-of-core, parallel and scalable panorama seam
technique that can handle arbitrary sized panoramas yet re-
quires limited memory independent of the total size of the
panorama. It uses a caching technique to save redundant disk
I/O. This cache is configurable to allow a user to trade mem-
ory overhead for reduced disk access.

2. Related Work

Once the images of a panorama are registered into a com-
mon global frame, it is desirable to smooth the transitions
between the images to give the impression of a single seam-
less image. A simple approach is to perform an alpha-blend
over the overlap areas. [Sze(06] provides an introduction to
this and other blending techniques. Although highly scal-
able, these techniques are not suitable for cases where there
are registration errors, dynamic elements or varying lighting
and exposure conditions across the images. These are very
common for larger panoramas. Hard seams between the im-
ages that minimize the energy of transition can often hide
the registration errors and dynamic elements and provide a
good input for techniques such as gradient domain blend-
ing [PGB03,LZPW].

Panoramas where the images are acquired in a single
sweep of the scene is a simplified case where only bound-
aries between pairwise images need to be considered [Mil75,
Mil77, Sze96, SS98, Dav9o8, UESO1]. The optimal bound-
ary between a pair of overlapping images can be computed
quickly and exactly using the min-cut/max-flow algorithm.
There has been some work to combine such pairwise seams
for more complex panorama configurations. [GMNGO09] use
an image distance based metric to combine the pairwise
seams for more complex panoramas. [EF01] combine the
seams by adding them together sequentially for the purpose
of texture synthesis. [STP12] present a novel technique of
combining these pairwise seams in a general panorama con-
figuration by introducing the concept of a driving adjacency
mesh data structure to encode the boundary relations and in-
tersections in a panorama.

Graph Cuts builds on the min-cut/max-flow algo-
rithm [BVZO01, BK04] to efficiently compute an approxi-
mate optimal solution for k-labeling of a graph. Graph Cuts
has been adapted to the panorama seams problem [KSE*03,
ADA"04] and it is currently a widely used technique. How-
ever, it is a computationally expensive and memory inten-
sive technique and is not suitable for gigapixel sized images.
As mentioned in the previous section, a hierarchical scheme
can be used to alleviate some of these problems but it is in-
herently unscalable. The only truly scalable technique for
panoramas is an out-of-core scheme where the Graph Cuts
algorithm is applied over a window of each individual im-
age [KUDCO7]. As we will show in Section 5, this serial
computation can take several hours to compute a solution.

There have been works that parallelize the min-cut/max-
flow algorithm on multicore systems [LS10, JSH, DB08]
and GPUs [VNOS]. [DBOS] is also capable of handling
graphs that are larger than the available memory. However,
min-cut/max-flow is not directly applicable to the panorama
seams problem and extending it to multi-label Graph Cuts is
non-trivial.
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Figure 2: Pairwise overlap between two images A and B.
Their boundaries intersect at two points. The optimal pair-
wise seam is the min-path that connects these points.

3. Panorama Weaving

In this section we give an overview of Panorama Weav-
ing [STP12] which is the basis of our scalable seam com-
puting technique.

Panorama Weaving produces a global seam solution by
combining independently computed pairwise seams into the
global seam network. Consider a pair of overlapping im-
ages as shown in Figure 2 with the boundaries of the im-
ages intersecting at two points. The pairwise seam between
these images will be a path between the overlap pixels which
connects these two intersection points and will partition the
union of the images into two regions. This path can be
computed by simply creating a dual graph where nodes are
between pixels and the edges separate neighboring pixels.
One can then compute the min-path on this graph, weighted
with an energy function, using an algorithm such as Dijk-
stra’s [Dij59]. The energy function is defined as Es(p,q)
where p,q € N and N is the set of all neighboring pix-
els. We would like to minimize the sum of the energy of all
neighbors E with a labeling L. For the panorama boundary
problem, this energy is typically [ADA*04] defined as:

PYEN

If minimizing the transition in pixel values:

Es(p:q) = rp)(P) = Iniq) (P + 1i(p) (@) — Ty (@)
or if minimizing the transition in the gradient:

Es(p:q) = Vi) (P) — Vi (D) + 11 VILp) (@) — Vi) (9)]]

where L(p) and L(g) are the labeling of the two pixels. The
label of a pixel represents the source image that provides
the value for that pixel. Notice that L(p) = L(g) implies

Es(p7q) =0.

To illustrate how the pairwise seams combine into a global
seam network, consider a typical labeling of a panorama as
shown in Figure 3(a). The labels form a collection of con-
nected regions (shown in solid colors) that are separated by
pairwise seams. A group of such seams meet each other at
common points. These points are called the branching points
of the seams. Figure 3(b), shows the pairwise seams and the
branching points. Note that this is a simplified model, but as
the previous work has shown this assumption still provides
quality seam solutions.

The global seam network as described above can be rep-
resented by an abstract mesh data structure which is the dual
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Figure 3: (a) An example labeling of a panorama. (b) The
labeling forms a set of connected regions separated by pair-
wise seams. Groups of seams join at points called as the
Branching Points (shown in red). (c) A mesh representa-
tion of the panorama. The vertices correspond to the images,
edges correspond to the pairwise seams and are orthogonal
to them and the faces correspond to the branching points.

S R

Phase 1 Phase 2 Phase 3

C(©

Figure 4: The phases to compute the global seam network.
Each face can be processed independently of each other in
a phase. Phase 1 computes the branching points and bound-
ary seams, phase 2 computes the shared seams and phase 3
detects and resolves seam intersections.

of the seam network as shown in Figure 3(c). The vertices
represent the images of the panorama, the edges represent
the pairwise seams, to which they are are orthogonal, and
the faces represent the branching-points. Given such a mesh
representation of a panorama, its global seam network can
be computed by processing the faces of the mesh indepen-
dently of each other in logically three phases. Figure 4 gives
an overview of these phases. In the first phase the branching
points of the faces are computed. The seams on the bound-
ary of the mesh can then be found, since their computation
is independent of other faces. In the second phase the seams
connecting the branching points are computed. These seams
are each shared by two faces, but only one needs to perform
the computation. The seams of a face can intersect and cross-
over each other causing areas of inconsistent labeling. In the
third phase, intersections between seams of a face are de-
tected and resolved.

The seams corresponding to the edges of a face meet at
the face’s branching point. Thus the branching point should
be located in the region of intersection of all the pairwise
overlaps represented by the edges, which is the same as the
region of intersection of all the images corresponding to the
vertices. Therefore, the images of a face must overlap each
other. In short, the vertices of a face form a clique of overlap
relationship. The intersection region is called as the face’s
Multi Overlap region. Figure 5 shows an example configura-
tion for a quad face. Only the pairwise overlaps represented
by the edges of the face need to be considered. For each
overlap, the intersection point that is closest to the multi-
overlap region is labeled as the inside point and the other one
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Figure 5: (a) A quad face of a panorama mesh with its
branching point and seams. (b) The collection of images that
form the face. These images have a non-empty intersection
called as the Multi-Overlap region. Only the pairwise over-
laps corresponding to the edges need to be considered. The
intersection point of an overlap closer to the multi-overlap
region is the inside point (red) and the other is the out-
side point (yellow). (c) The inside points are adapted into
a branching point. The branching point is located inside the
multi-overlap and minimizes the min-path distances from the
outside points.

is labeled as the outside point (Figure 5(b)). The seams are
combined by replacing the inside points with the branching
point. A single-source/all-destinations min-path tree, called
the Seam Tree, is computed on the dual graph of each over-
lap with the corresponding outside point as the source. Each
node of a seam-tree gives the cost of the path from the source
to that node. Within the multi-overlap region, the node for
which the sum of its costs from each of the seam-trees is
minimized, gives a good location for the branching point.

For faces that contain the mesh-boundary edges, seams
that are orthogonal to those edges are computed by a sim-
ple lookup in the edge’s seam-tree from the face’s branching
point. Once the branching points for all the faces are com-
puted, seams orthogonal to the interior edges of the mesh are
computed by connecting the branching points of its adjacent
faces with a min-path on the energy field defined over its
overlap.

There is a possibility that the paths of the individual seams
of a face will intersect. The details about how and why the
seams intersect, its implications and resolution are beyond
the scope of this paper. Interested readers are referred to
[STP12] for further details. At a high level, intersections be-
tween pairs of seams are handled by truncating the seams up
to the furthest intersection point and computing a new seam
path to the intersection point over a proper energy function.

The mesh representation of a panorama can be generated
from the collection of its input images by creating an adja-
cency graph where the nodes represent the images and the
edges represent each pairwise overlap between the images.
All non-overlapping maximal cliques of this graph are iden-
tified and the edges that form the boundary of the cliques are
activated. The cliques then become the faces and the active
edges become the edges of the mesh.

4. Scalable Seams

Panorama Weaving is an in-core technique that needs all the
images and intermediate buffers, such as overlap energies
and seam trees, in memory. This is not scalable to gigapixel
panoramas as the memory usage greatly increases with the
total number of images. In this section, we describe our scal-
able seams technique.

4.1. Out of Core Seams

One of the strengths of Panorama Weaving is that the faces
of the mesh representation can be processed independently.
We use this feature to process one face at a time and only
use the memory required per face. Moreover, the processing
within a face is ordered such that all the images and buffers
of the face need not be active at all times and can be ac-
quired and released as needed. There is a trade off between
speed and memory as acquiring and releasing results in in-
creased disk I/O and/or recomputation of buffers. Therefore,
it is necessary to reduce the number of times a particular
buffer is acquired for good performance. We use a caching
scheme for this purpose. The size of this cache can be con-
figured based on the amount of memory available in a partic-
ular system and/or a user’s preference. The rest of the section
describes the Scalable Seams technique in detail:

Input. The input is typically a collection of images that have
already been registered, transformed and rasterized along
with their bounding boxes in the panorama. The invalid pix-
els of the images have an alpha value of zero and this prop-
erty is used to identify the shape of the image.

Preprocessing. A pair of images is assumed to be over-
lapping if their bounding boxes overlap. This information
is used to build the full adjacency graph of the images.
The mesh representation is then computed from this adja-
cency graph as described in section 3. In case of gigapixel
panoramas, since the images are typically acquired by robots
on a grid a simplifying assumption can be made that the
panorama forms a quad mesh layout.

Pass 1. The edges of a face are assigned a winding order
(Figure 6 top) and we process the edges in that order. Fig-
ure 6 shows the various data buffers required for the compu-
tation of the branching point, and their dependencies. For
each edge, the images corresponding to their vertices are
loaded and their overlap energy is computed. The image
buffers can now be released. Next, the seam tree is computed
after which the energy buffer can be released. The costs of
the nodes of the tree in the multi-overlap region are accu-
mulated in a cost buffer, at which point the seam tree can be
released. After the costs from all seam trees of the face have
been accumulated, the location of the minimal value in the
cost buffer will be the location of the branching point. An-
other iteration through the edges is performed and for mesh-
boundary edges, the corresponding seam path can be found
using the edge’s seam tree. A cost-memory trade-off can be
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Figure 6: Computation of the branching point of a face and
the dependencies between the required data structures. The
edges are iterated over based on a winding order (top) The
images corresponding to the two vertices are loaded and the
overlap energy is computed. A single-source/all-destinations
min-path tree (seam-tree) is computed on the energy. The
costs to its nodes within the multi-overlap region are accu-
mulated into an accumulation buffer. The minimal point in
this buffer gives the location of the branching point. Buffers
can be freed once their dependencies have been computed.
Edges are processed sequentially so only one set of these
buffers need to be active at a time.

made at this point, if seam trees of these edges are not freed
in the first iteration. In this way the reloading of images and
recomputation of the overlap energy and seam-tree can be
avoided. Another such trade-oft can be made for image load-
ing. Since the second image of an edge becomes the first
of the next edge, reloading of the image can be avoided by
maintaining a circular buffer of length two for the images.
The first vertex of the first edge is also the second vertex of
the last edge. By keeping the first image around for the entire
iteration on the edges the number of times that each image
of a face is loaded can be reduced to just once.

Pass 2. For all shared edges the corresponding seam is
computed as a min-path on the overlap energy between the
branching points of the adjacent faces. Note that passes 1 and
2 do not strictly need to be two separate passes. During the
first pass, if the branching-point for an adjacent face is avail-
able, a face can simply compute the proper seam path after
its branching point is found. This can be checked by having
a counter for each shared seam that counts the number of
branching points that have been computed. For parallel im-
plementations this counter should be atomic. After computa-
tion of a branching point the counter is incremented for each
of the face’s shared seam. The face for which the counter be-
comes two is the face that computes the seam. Merging the
two passes also allows us to save the overlap energy (com-

(© The Eurographics Association 2013.

puted during the first iteration over the edges) of the shared
edges and reuse that for the min-path computation.

Pass 3. Pairwise seams of a face are checked for intersec-
tions. If detected, the furthest intersection point is identified
and the seams are truncated to this point. Note that seams
that are shared can have intersections in both of its faces.
To be able to process this pass for the faces independently,
the seam paths are implemented as double ended queues. To
truncate a shared seam one face only needs to update its head
and the other only updates its tail with no conflict between
the two. A new seam is then computed from the branching
point to the intersection point. The required images and over-
lap energies are loaded and computed as required.

Output. The output of our system is a set of seams. Each
seam is represented by the labels they separate the re-
gion into and their paths. The region of each image in the
panorama can be rasterized from the seams that have the im-
age as one of their labels.

4.2. Implementation Details

For testing, we have implemented four different versions
of our technique. First a single threaded, out-of-core ver-
sion that sequentially iterates over each individual face. Two
passes are performed, to compute the seams and resolve the
seam intersections. The computation of branching points,
shared seams, and boundary seams are merged into a single
pass as described previously. The intersection resolution is
still performed in a separate pass. We chose to implement the
cost-memory trade-offs mentioned in the previous subsec-
tion to achieve a balanced memory usage vs performance.

The second version is a direct parallelization of the se-
quential out-of-core version. A pool of threads is maintained
and each thread processes one face at a time. After process-
ing a face, a thread chooses the next unprocessed face from
a global work queue. Each face is put into the work queue
twice - once for branching point and seams computation and
again for intersection resolution. In this version, there is no
separate pass for intersection resolution. As soon as all the
seams of a particular face have been computed it is put back
in the work queue for intersection resolution. This way we
avoid a stall in the pipeline that would have resulted from
separate passes.

The third version is an extension of the direct paral-
lel method. Note that nodes and edges are shared between
neighboring faces. This corresponds to sharing of images
and pairwise overlaps. Due to dynamic scheduling, it is
likely that parallel threads are working on adjacent faces.
Given that the images and buffers are read-only data, we
can reduce I/O and computation time by sharing these re-
sources among the threads. The image and overlap buffers
are tracked by reference counts, whenever a thread requires
a resource it increments its reference count and decrements
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Figure 7: Seams computed on the SLC panorama - 3.27 gi-
gapixels with 624 individual images. The results were gener-
ated in 3.76 minutes using 24 threads and 3.0 GB of memory.
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Figure 8: Seams computed on the Lake Louise panorama
- 7.52 gigapixels with 1512 individual images. The results
were generated in 14.71 minutes using 24 threads and 4.7
GB of memory. Panorama courtesy of City Escapes Nature
Photography.

it when it is done. The buffers are only freed when its refer-
ence count goes to zero. We call this the sharing version.

The fourth is the caching version which further improves
upon the previous version by not immediately freeing the
resources whose reference count has reached zero. Instead it
can be configured with a user defined cache size. When the
memory usage starts exceeding this size, a cache manager
starts freeing buffers with reference count zero in a Least
Recently Used manner until the memory usage returns to the
set threshold. This allows the implementation to use more
memory in systems that can afford it to further reduce the
disk I/O and recomputation.

5. Results

We have conducted tests to compare our technique with the
moving window implementation of Graph Cuts [KUDCO07]
with additional strong scaling tests of our technique. The fol-
lowing two datasets were used for testing:

e SLC. 122,625 x 26632, 3.27 gigapixels panorama com-
posed of 624 individual images acquired in a 48 x 13 grid.
Figure 7.

e Lake Louise. 187,068 x 40201, 7.52 gigapixels
panorama composed of 1512 individual images acquired
in a 72 x 21 grid. Figure 8.

5.1. Comparison with Graph Cuts

As mentioned in Section 2, the moving window application
of Graph Cuts [KUDCO07] is the only work that has been
shown to work with gigapixel sized panoramas and there-
fore is used for our comparison. We also extended the im-
plementation by adding support for hierarchical solving. The
implementation sequentially applies the Graph Cuts algo-
rithm over the window of each individual image. For each

SLC

Time (min.) | Max MB | Total Energy

GCl1 1533.97 3324 1.070 x 10%
GC3 318.21 867 1.119 x 108
SS 64.6 290 1.036 x 108

Lake Louise

Time (min.) | Max MB | Total Energy

GCl1 8037.82 4022 2.927 x 108
GC3 1029.88 1067 3.279 x 108
SS 266.64 382 2.841 x 108

Figure 9: Results of our single threaded out-of-core imple-
mentation (SS) and the two sliding-window based out-of-
core Graph Cuts implementations - Full resolution version
(GC1) and Hierarchical version with 3 levels (GC3). GC1
is too slow to be practical. GC3 is faster and uses lesser
memory but produces poorer results. Our method is much
faster than GC3 and uses much less memory while produc-
ing seams that are better than even GC1.

image, it and its overlapping images are loaded and the en-
ergy function is computed over the domain of the image.
The Graph Cuts algorithm is then applied on the energy for
the solution of the window. Overlapping portions from solu-
tions of previous windows are locked so that the seams are
consistent across window boundaries. For hierarchical im-
plementation an image pyramid with the specified number
of levels is created per each window. Graph Cuts is first ap-
plied to the energy computed at the deepest level. The solu-
tion is then upsampled to the next level using bilateral up-
sampling. A dilation is applied on the upsampled seams and
Graph Cuts is again performed on the dilated region. This
step is repeated till the top level of the pyramid. For Graph
Cuts we use the widely used implementation provided by
[BVZ01,BK04,KZ04,DOIB10].

We tested the Graph Cuts based implementation on our
datasets with two different configurations - one running the
solver at full resolution and the other with 3 levels of hier-
archy. We compared the running times, memory usage and
total energy of the results with the single threaded, out-of-
core implementation of our technique. The tests were run on
a system with a quad core Intel Core i7 920 CPU @ 2.67
GHz and 6 GB of memory.

The results are detailed in table 9. Even though the out-of-
core Graph Cuts implementation can handle gigapixel sized
panoramas, it is too slow for practical purposes. The hierar-
chical solver is much faster and requires lesser memory at
the cost of a lower quality solution. In contrast, our system
is much faster, uses much less memory and the final energy
computed is lower than the full resolution Graph Cuts im-
plementation.

5.2. Scalability Tests

We have performed scalability tests on our three parallel,
out-of-core implementations. The system for these tests was

(© The Eurographics Association 2013.
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an Intel Xeon based workstation with 4 Intel Xeon E7540
CPUs @ 2.00 GHz, having 6 physical cores and 12 HT
threads each and 128 GB of RAM. Table 10 shows the per-
formance results for SLC and Lake Louise datasets.

The direct threaded implementation is fast and scalable
and exhibits near linear scaling throughout. Even for up to
the maximum number of physical cores the efficiency is
maintained around 95% for SLC dataset. The slight reduc-
tion in efficiency at 24 threads is due to the smaller size of
the panorama and it is not seen in the larger Lake Louise
dataset, which is maintained at 99% efficiency. From the ta-
ble it can be seen that the maximum memory usage increases
with the number of threads for the direct and shared imple-
mentations, but memory/thread is always maintained bellow
the usage of single threaded runs.

The sharing implementation shows an overall improve-
ment in the performance compared to the direct implemen-
tation. By sharing the buffers among the threads it reduces
their recomputation and disk I/O. This results in a super-
linear speed-up as shown in the graph with the efficiency
reaching as high as 114% for SLC and 117% for Lake Louise
datasets. The data sharing also reduces the maximum mem-
ory usage of this implementation. As shown in the table,
for SLC dataset it only requires 3.0 GB of memory with 24
threads compared to 4.0 GB for the direct implementation.
Similarly for Lake Louise dataset it only requires 4.8 GB of
memory with 24 threads compared to 5.8 GB for direct.

For the caching implementation, the tests were configured
to use 8 GB of cache which is a reasonable size for mod-
ern workstations. With this implementation we are able to
further improve the performance while still maintaining its
scalability. As the table shows, the efficiency doesn’t go bel-
low 94% for SLC and 98% for Lake Louise datasets. The
maximum memory usage is configured to 8 GB.

6. Conclusion

In this work, we have presented a technique for computing
seams for panoramas that is fast, light and scalable. On re-
source constrained system it is able to run in an out-of-core
fashion using very little memory and still produce a solution
orders of magnitude faster than the previous state-of-the-art:
a moving window Graph Cuts scheme. On multi-core sys-
tems it can run in parallel and achieve super-linear speed-ups
by sharing data among the threads and reduce I/O and com-
putation. On systems with higher memory resources it can
use caching to further reduce I/O and improve the perfor-
mance. Moreover the energy of the seams produced by our
technique is comparable to the previous work and in most
cases, better.

Panorama Weaving allows for interactive editing of
seams. For future work, we plan to extend our technique to
allow local editing of seams for large panoramas in a scal-
able and interactive manner.

(© The Eurographics Association 2013.
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Figure 10: Scaling results of our three parallel implementations on the SLC (top) and Lake Louise (bottom) datasets. Due to
space limitations the tables only show numbers for core counts in multiples of 4. The plots show all the data points. (All timings
are in minutes). All implementations show good efficiency (Eff. %) throughout, with the shared implementation achieving super-
linear speedup due to data sharing. The maximum memory usage (MB) of the direct and shared implementations do increase
with the number of threads but memory/thread is always maintained bellow the usage of single threaded runs. The cached
implementation can be configured with a cache size (8 GB in this case) that allows it to scale to systems with larger memory. It
provides the best performance among all three implementations by further reducing disk 10 and computations.
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