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Fig. 1: (a) Examples from a dataset of 10k histology images of colorectal cancer. (b) An example persistence diagram that encodes
the topological structure in an image. The inset illustrates an elbow method plot run from clustering a subset of 1800 images
using 1-Wasserstein distance. This shows there are approximately 8 topologically distinct clusters. (c) Clustering result using
1-Wasserstein distance on the subset. (d) Our high-quality concise representation uses only a fraction of the memory and computation
time. (e) Our approach scales to the full dataset, which is not feasible with 1-Wasserstein.

Abstract—Persistence diagrams have been widely used to quantify the underlying features of filtered topological spaces in data
visualization. In many applications, computing distances between diagrams is essential; however, computing these distances has
been challenging due to the computational cost. In this paper, we propose a persistence diagram hashing framework that learns a
binary code representation of persistence diagrams, which allows for fast computation of distances. This framework is built upon a
generative adversarial network (GAN) with a diagram distance loss function to steer the learning process. Instead of using standard
representations, we hash diagrams into binary codes, which have natural advantages in large-scale tasks. The training of this model
is domain-oblivious in that it can be computed purely from synthetic, randomly created diagrams. As a consequence, our proposed
method is directly applicable to various datasets without the need for retraining the model. These binary codes, when compared using
fast Hamming distance, better maintain topological similarity properties between datasets than other vectorized representations. To
evaluate this method, we apply our framework to the problem of diagram clustering and we compare the quality and performance of our
approach to the state-of-the-art. In addition, we show the scalability of our approach on a dataset with 10k persistence diagrams, which
is not possible with current techniques. Moreover, our experimental results demonstrate that our method is significantly faster with the
potential of less memory usage, while retaining comparable or better quality comparisons.

Index Terms—Topological data analysis, Persistence diagrams, Persistence diagram distances, Learned hashing, Clustering.

1 INTRODUCTION

The features quantified by topological data analysis (TDA) [23] have
been shown to express the fundamental structure of scalar fields in a way
that is generally applicable to many domains. TDA approaches—such
as persistent homology [24], contour trees [12], Reeb graphs [8, 55],
and Morse(–Smale) complexes [21, 33]—have demonstrated ability
to extract meaningful structure in a variety of research applications,
including 3D shape matching [14], combustion physics [10, 32], nu-
clear physics [49], fluid dynamics [38], chemistry [7, 31], Alzheimer’s
disease [47], autism spectrum disorders [46, 63], cancer histology [44],
protein folding [81], and bio-molecular analysis [52]. More generally,
recent work includes using TDA quantification as input to machine
learning [13, 44, 58, 59].

As described in detail in Section 2.1, a persistence diagram is a
common way to present the topological structure in a dataset. The
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distance between these diagrams is often used to measure the topo-
logical (dis)similarity between data, which has important applications
in scientific visualization [83]. Moreover, for approaches that cluster
based on topological similarly [14, 44, 74, 76], computing the distance
between diagrams is a fundamental operation. However, computing
these distances is costly in practice.

The most widely accepted persistence diagram distance measures,
the Wasserstein distances, require expensive matching of all persistence
points between two diagrams. As discussed in Section 2, to combat
this complexity, many approaches have attempted to reduce this cost.
The goal of our work is the same, but provides significant advances
over the state-of-the-art. As we detail in this paper, we provide a new
representation for expressing topological structure that is more concise
than previous works, but also leads directly to faster computations of
distances. In particular, we show how to reduce diagrams to simple
64-bit binary codes. The key to this representation is a learned hash
function. As we show, this hash can be learned purely from random,
synthetically generated diagrams. We have found that the only con-
straint on generating training data is that the generated diagrams should
have approximately the same average number of persistence points as
are in the test data. In other words, the training is domain-oblivious
with a model being potentially used on a wide variety of datasets with-
out the need for retraining. In this new representation, distances are
calculated by a simple bit-wise count comparison between binary codes
(the Hamming distance). This makes distance computation extremely
fast and scalable. We illustrate this scaling through the clustering of a



dataset with 10k diagrams, a size which is not achievable for several
existing approaches.

1.1 Contributions
The specific contributions of this work are:

• A concise binary code representation of persistence diagrams that
maintains topological (dis)similarity in Hamming space;

• A procedure to train the binary code hash function that can run
purely on synthetic data and therefore is domain-oblivious; and

• Applications to topological clustering of real-world datasets that
provide: Significant comparison speedups, potentially lower mem-
ory footprints, and comparable or better quality clustering results
than other vectorized representations of persistence diagrams.

2 BACKGROUND AND RELATED WORK

This section outlines the technical background for persistent homology
and hashing, as relevant to the methods developed in this paper.

2.1 Persistent Homology and Persistence Diagrams
Given a dataset, we view it as a topological space or a sequence of
(nested) topological spaces, called a filtration. Then, we employ homol-
ogy and persistent homology, respectively, to qualitatively and quan-
titatively describe it. Homology is a concept from algebraic topology
that captures the fundamental structure of a topological space [54]. The
structure is qualitatively described through the homology groups, whose
generators we call features. Each feature has a dimension associated to
it; dimension zero features are connected components, dimension one
features are loops or tunnels, dimension two features in R3 correspond
to voids, etc. Persistent homology quantifies the homology of an entire
filtration [23]. In particular, each feature fi also has a birth time bi and
a death time di, indicating the parameters of the filtration for which
that feature “lives”; we call the difference di−bi the lifetime or persis-
tence of the feature. We represent this feature as the persistence point
(bi,di) ∈R2. Since a feature must be born before it dies with respect to
the filtration parameter, persistence points are restricted to lying above
the diagonal defined by the line x = y.1 The persistence diagram is the
multi-set of birth-death pairs.

This abstract concept is best illustrated by describing example fil-
trations. For scalar fields, a common filtration is the evolution of
sublevel sets. The sublevel set filtration is the progression of a water-
shed transformation [6], where water sources grow from local minima
(i.e., basins) of the field. The zero-dimensional features (i.e., connected
components) are the watersheds that begin at the local minima. One-
dimensional features form when a watershed completely surrounds a
local maximum (i.e., peak). The lifetimes of these features are recorded
as the scalar value (i.e., water height) from where a feature first appears
(birth) to the value at which it merges with an “older” feature (death).
All birth and death events occur at critical points.

For unstructured points (i.e., point cloud data that is given as a
discrete set of points with a pairwise distance defined), a filtration
can be built from the evolution of a Vietoris–Rips complex [34, 77].
Here, simplices are formed in the complex from an ever-increasing
neighborhood around each point. In this filtration, keeping track of the
connected components can detect the size and the number of distinct
clusters and recording the evolution of one-dimensional features can
detect the presence and size of circular features in the data. These
features are agnostic to the domain of the data or even the dimension
of the space. For this reason, one can say that these features represent
the fundamental structure of data.

Fig. 2 illustrates a simple example of the zero-dimensional features
of a sublevel set filtration on a scalar field with two basins. As the
sublevel set increases, first the purple feature is born in the deepest
basin, followed by the green feature. As the filtration continues, the

1In general, it is possible for some features to have a birth but no associated
death. In our experiments, these features are not as informative as the features
with defined birth and death times. For this reason, we do not include them in
our definition above.
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Fig. 2: Progression of a sub-level set of a scalar field. The feature
(green) is born at a minimum and dies when it merges with an older
feature (purple). The birth and death are represented as a point in the
zero-dimensional persistence diagram. The L1 distance from this point
to the diagonal is the lifetime, or persistence, of the feature (red).

green feature eventually dies when it merges with the purple connected
component. The green feature is represented in the diagram by plotting
these birth and death values. Note, that since the purple feature has not
yet died, it is not yet in the diagram.

Wasserstein and Bottleneck Distances Letting D denote the
collection of all diagrams, the q-Wasserstein distance dq : D×D → R
is defined by

dq(p1, p2) := min
M

(
∑

(a,b)∈M
||a−b||q∞ +

1
2q−1 ∑

a∈Mc
|ax−ay|q

)1/q

,

where M ranges over all matchings between persistence diagrams p1
and p2, and Mc is the set of persistence points in p1 t p2 that do not
appear in the matching M; see [19,37,40,53]. The Wasserstein distance
optimizes a matching between two diagrams and sums the distances be-
tween matched points (M) as well as the point-to-diagonal distances for
unmatched points (Mc). Letting q→ ∞, gives the bottleneck distance
(or, interleaving distance) [18]. Setting q = 1 gives the one-Wasserstein
distance (W1), a popular choice in applications and therefore the target
of our work [1,13]. Note that when we refer to the Wasserstein distance
without specifying q, we are referring to q = 1. These diagrams are
(Lipschitz) stable in the presence of slight perturbations or noise in
data [19]. Given this stability, diagrams that are close in distance are
often considered to be topologically similar. Computationally, however,
both the Wasserstein and the bottleneck distances are expensive, as they
require computing the optimal matching between persistence points in
the two diagrams. In particular, computing the Wasserstein distance
between two diagrams takes O(n2 log2 n) time, where n is the total
number of simplices (which, in turn, can be exponential in the size of
the input data) [75].

Approximating Distances When many distances between dia-
grams need to be computed, the roughly quadratic computation can
be daunting. Thus, several approaches have been introduced to ap-
proximate computing the Wasserstein distances [2, 5, 40, 62, 64]. One
approach that is quite successful is to simplify the input representation,
before a persistence diagram is even computed [35, 78]. However, this
makes assumptions on the underlying domain (e.g., a 2D or 3D image).

Kerber et al. [40] introduced an approximate Wasserstein distance
algorithm to accelerate the computation of the matching using a k-d
tree. This iterative computation bounds either quality or time to approx-
imate the Wasserstein distances; we call this distance the progressive
Wasserstein (PW) distance. This algorithm was extended by Vidal et
al. [76] for the problem of computing barycenters of persistence dia-
grams. Although very fast, these approaches still require the pairwise
matching and, as we illustrate in Section 4.4, the memory requirements
can be significant as data sizes grow.

In many circumstances, the diagrams we have are bounded, that is,
there exists a square D⊂R2 such that all persistence points lie inside D.
Then, for a given input parameter d ∈ N, we create a d×d grid over D.
Using this grid, we define a histogram, where we count the number of
persistence points in each grid cell. Fasy et al. [25] use these histograms
to design a data structure that supports searching for near neighbors
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Fig. 3: Training architecture of the PD-GAN model that takes a set of persistence diagrams P as input and learns corresponding binary codes B.
Yellow arrows depict flow of diagrams through training, while grey arrows represent information flow (loss functions, etc.). A Generative
adversarial network (GAN) is used to train the encoder of binary codes such that the similarity matrix of codes, SB, closely matches the similarity
of the input diagrams, SP. Our final hash function that takes in a diagram and produces a binary code is highlighted in green.

based on the bottleneck distance and Lacombe et al. [43] computes
Wasserstein distances (optimal transport in this space) between the
histograms. While this work can benefit from several fast optimal
transport computation approaches [20, 65], it still poses significant
costs for distance computations. We call the Wasserstein distance
between histograms the Histogram Wasserstein (HW) distance.

2.2 Other Topological Descriptors
The previous approaches for histograms can be thought of as repre-
sentations of the distribution of the persistence points. In this line
of research, density estimators built over the persistence points have
been studied by several groups of researchers [1, 4, 16, 58, 59]. One
benefit of considering density estimators is that they can be vectorized.
With vectorized representations, the space cost of the discretization
can be weighed against the speedup gained by computing Lp distances
between vectors instead of distances between persistence diagrams.

Persistence Images (PI) The persistence image (PI) is a dis-
cretization of a weighted kernel density estimator (a non-parametric
density estimator) built on the rotated points of a persistence dia-
gram [1]). Roughly, these images estimate the density of points by
summing a Gaussian kernel centered at each point. In practice, using
the PI requires choosing: a bounding box, a discretization resolution,
and a weight function on the set of points in the persistence diagram.
Choosing these parameters can be non-trivial in practice, but various
heuristics have been successfully employed [1, 16, 84].

Betti Curves (BC) Other topological invariants include the Euler
characteristic and the Betti numbers. For a given integer k ∈ N, the kth

Betti curve (BC) [27, 60, 82] is the rank of the dimension k homology
group with respect to the filtration parameter. Roughly, this is the count
of the topological features present as the filtration parameter increases.
Each feature associated to a persistence point (bi,di) contributes +1 to
the Betti curve in the interval from bi to di. Hence, the more persistent
a feature, the more it contributes to the Betti curve. The Lp distance be-
tween Betti curves can be computed explicitly, or can be approximated
by sampling or discretizing the domain. Often, the latter approach is
preferred in practice. Hence, using the Betti curves requires select-
ing the dimension(s) of interest, a bounding box, and a discretization
resolution.

2.3 Learning to Hash
Given the ability of binary codes to significantly boost distance compu-
tation for searching, hashing methods have attracted increasing atten-
tion for large-scale approximate nearest-neighbor search [3, 41, 42, 57].
In this paper, we focus on using unsupervised machine learning to
build a good hash function that maps high-dimensional data into low-
dimensional Hamming space.

Unsupervised building of hash functions can be roughly divided into
two groups: non-deep hashing and deep hashing. Typical non-deep

hashing includes PCA hashing [79], spectral hashing [80], and iterative
quantization [29], which all attempt to preserve a pairwise similarity of
the original data in their resulting binary codes. For example, spectral
hashing uses eigenfunctions of the data similarity graph to build their
hash. More recently, deep hashing [22, 28, 48, 67] has been introduced
due to the great advances made in deep learning. The non-linear struc-
ture of a convolutional neural network (CNN) can extract multiple
hierarchical feature representations of input data and learn their nonlin-
ear relationships to build a binary representation. However, the need
for data to be labeled for CNNs means that unsupervised approaches
to learn a hash function cannot take full advantage of a deep learning
model. Inspired by the introduction of the generative adversarial net-
work (GAN) [30], other work focuses on the unsupervised learning of
hash functions using a GAN without the need for labeled data [11, 66].
Overall, previous hashing approaches mainly focused on the image
retrieval tasks, which live in Hilbert space and have nice statistical prop-
erties. In our work, we show that a natural image hashing approach [66]
can be used to hash persistence diagrams in non-Hilbert space. In doing
so, we present the first approach to transform topological features into
a binary representation.

3 LEARNING TOPOLOGICAL BINARY CODES

In this work, we explore the use of concise binary codes to represent
persistence diagrams. Below, our process takes as input N persistence
diagrams P = {pi}N

i=1 and trains neural networks to hash persistence
diagrams to binary codes. Then, the set of binary codes and their
Hamming distances can be used in lieu of persistence diagrams and their
Wasserstein distances. See Fig. 3 for an illustration of the architecture
for our approach.

3.1 Vectorizing Input
The first step in our hash function is to take as input a set of dia-
grams P = {pi}N

i=1 and to convert it into a vectorized form appropriate
to use as input to train networks. As mentioned in Section 2, we
have several choices for vectorized representations of the input persis-
tence diagrams, including 2D histograms using Wasserstein distance
(HW) [43], persistence images using L2 distance (PI) [1], and Betti
curves using L2 distance (BC) [27]. Using the parameters outlined
in the respective papers, we compare the use of these three vectoriza-
tions for clustering relative to clustering persistence diagrams using
Wasserstein distance. Table 1 provides the results using the Fowlkes-
Mallows score (FMS), the evaluation measure used in this work (see
Section 4.2). The scores can be in the interval [0,1], with a score of
1 indicating a perfect match. As Table 1 illustrates, HW provides the
most accurate clustering. Therefore, we use 2D histogram vectorization
for our training and hashing.

We transform our diagrams to histograms on a 2D uniform grid
of size 50× 50 on [0,1]2 with the entropic term: 0.1/avgN

i=1|pi| (the
recommended parameter values [43]). Each cell of the grid counts



the number of persistence points in the diagram that lie inside each,
with an additional cell that contains a count of the total number of
persistence points. In addition, similar to Reininghaus et al. [58], we
augment this representation by reflecting counts across the diagonal to
the empty space below, see Fig. 4. We found that this augmentation im-
proves the quality of our clustering results over the standard histogram
(improvement of 3% for the 3D Shape-1 dataset of Section 4.1). In
summary, the first step of training our hash function is to convert each
diagram pi ∈ P = {pi}N

i=1 into a 2D histogram vi. In Fig. 3, V denotes
the set of all such histograms.

Table 1: Comparison of vectorized representations using Fowlkes-
Mallows score. Values closer to one are better.

Dataset HW PI BC
3D Shape-1 0.98 0.81 0.8

Input 2D histogram

1 1 1
1

1
1 1 1

4

Persistence diagram

Fig. 4: The initial 2D histogram representation used for training and an
intermediate step before hashing.

3.2 Similarity Matrix
Before training our model, we need one more object: a N×N similarity
matrix, SP = {sP

i j}N
i, j=1, that stores all pairwise similarities between

histograms in V. We explore two different methods to define similarity.
Our first approach is to invert a topological distance measure. The
most natural choice is to invert Wasserstein distance, since this is the
distance that we would like to mimic using Hamming distances of
binary codes. As our experiments in Section 4 illustrate, computing
these distances for potentially thousands of training datasets is pro-
hibitively expensive. Therefore we adopt the HW distance on V as used
in Lacombe et al. [43]. This gives us a computationally feasible way to
build the matrix, and also aligns well with our choice of intermediate
vectorization. Specifically, we compute a real-valued similarity matrix
with sP

i j := 1−d1(vi,v j).
To give more flexibility to the learning algorithm, we also explored

the use of a less rigid binary similarity matrix. Rather than using the
real/original values above, the matrix is formed by setting sP

i j = 1 if
vi and v j are similar and sP

i j =−1 if they are dissimilar. Defining this
similarity can take many forms. We found that thresholding based on
the closest k-nearest neighbors for each diagram was not sufficient.
This had the tendency to count distant persistence diagrams as similar
if a training diagram was not close to many others (also, close diagrams
were treated as dissimilar if a diagram had many neighbors). We
opted to use a rejection approach where all diagrams that have distance
greater than the mean distance value are rejected as dissimilar. This
is done in two passes on a per row (diagram) basis. This approach
allows the binary labeling to have a soft threshold that maintains small
distances, discounts large distances, and is less rigid than a nearest
neighbor approach. As we show in Section 4, this flexible binary matrix
approach outperforms real-valued distances.

3.3 PD-GAN Model
We now describe how we generate a 64-bit binary code by learning
a hash function h : D → {0,1}64, where D is the original space of
diagrams. The hash is designed to maintain topological similarity

when comparing binary codes with Hamming distance. Our learning
framework uses the image hashing approach of Song et al. [66]. Below
we describe their approach and how it is used in our context. To build
our hash function, two key parts are trained for the PD-GAN model,
the encoder and the GAN; see Fig. 3:

Encoder The encoder extracts the features of input diagrams based
on a pretrained VGG19 network [66,69] with five groups of convolution
layers with max pooling. The number of filters in each of these groups
are 64, 128, 256, and 512. The output size of the last fully connected
layer is the bit length L = 64. The training of the encoder is driven by
minimizing a similarity loss function; see Section 3.3.1. After training,
each binary code, h(vi) = bi ∈ B, can be formed from the signs of
the values of the last fully connected layer when vi is run through
the encoder (i.e., h(vi)

k = sgn(xk), where xk is the k-th value in the
last layer). We call this last layer the binary-code layer. However, a
non-smooth, binary representation can be problematic for the gradient
computation needed in training. To avoid this problem, an intermediary,
real representation of the binary code, B′ = {h′(vi)}N

i=1, is used during
training:

h′(vi)
k =

 +1 for xk ≥ 1
xk for 1≥ xk ≥−1
−1 for xk ≤−1,

where k is the k-th element of the binary code. After training, the
binary codes, B, can be extracted from the binary-code layer as de-
scribed above.

GAN: Generator and Discriminator To improve the accuracy of
the learned hash function, a GAN [30, 66] is used. See Fig. 3 (blue).
Specifically, the generator G can be considered as an inverse encoder,
where the output of the encoder is used as the input to the network with
four deconvolutional layers. G creates a set of synthetic histograms, V∗,
from their training codes, B′. The generator’s goal is to create a V∗
which cannot be distinguished from V by the discriminator D. G is
trained by minimizing diagram loss and adversarial loss functions
defined below. The discriminator informs the generator to improve V∗,
while the generator then informs the encoder to improve the hash
function.

3.3.1 Loss Functions
Loss functions need to be defined for the above components to mini-
mize: similarity loss, diagram loss, and adversarial loss.

Similarity Loss Given the similarity matrix SP = {sP
i j}N

i, j=1 from
Section 3.2 and the training codes B′, the similarity loss captures a
direct connection between our binary representations and topological
distances. Let SB = {sB

i j}N
i, j=1, where sB

i j =
1
L h′(vi)

T h′(v j) and L is the
bit length. Then the similarity loss is defined as:

lsim =
1
2
||SB−SP||2 + ||B′−B||2 ,

where ||.|| are Euclidean norms.

Diagram Loss Intuitively, the diagram loss compares the gener-
ated histograms, V∗, to the corresponding input histograms, V. The
diagram loss function is the combination of a pixel-wise Mean Squared
Error (MSE), and the perceptual loss [66]. Perceptual loss is given by
the last layer of the discriminator, D. Perceptual loss accounts for the
observation [45] that pixel-wise MSE optimization often lacks high-
frequency content. We verified experimentally in our test dataset that
including perceptual loss provided more accurate results. These two
losses are summed to form the diagram loss: ldia = lmse + lperceptual .

Adversarial Loss The adversarial loss is designed to improve
the reconstruction quality of generator G and is defined as ladv =
log(D(V))+ log(1−D(V∗)).

Combined Loss Finally, the combined loss used in training is
the weighted sum of the three losses: l = lsim +ω1ldia +ω2ladv, where
ω1 = ω2 = 0.1 were used in our experiments as in Song et al. [66].
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3.3.2 Learning
To train the PD-GAN, the loss functions are minimized in the fol-
lowing steps. First, the training codes B′ are created by the encoder,
using parameters φ for the VGG19 part of the encoder and W for the
binary-code layer. Then the generator G reconstructs the diagrams V∗
with a parameter vector θ . The discriminator D uses the parameter
vector σ . Back-propagation for learning and stochastic gradient de-
scent are used to find the (locally) optimal parameters based on the
loss functions. Specifically, the parameters {φ ,θ ,σ ,W} are updated
during each iteration, where τ = 0.001 is the default learning rate in
our experiments:

W←W− τ5W (lsim + ldia)

φ ← φ − τ5φ (lsim + ldia)

θ ← θ − τ5θ (ldia + ladv)

σ ← σ + τ5σ ladv

3.4 Hash Function and Distance Computation
After training, diagrams can be hashed by first converting them into
their 2D histogram representation and then running each through the
PD-GAN encoder to map each to a 64-bit integer. See Fig. 3 (green).
A direct consequence of this binary encoding is that the representation
is concise and distances between codes are computed in Hamming
space. Distance computations are now a simple bit-wise operation: a
population count of the XOR of the bits (popcount(X⊕Y ) for binary
codes X and Y ). Not only is this distance computation simple, it is also
supported in hardware on modern CPUs. In Section 4 we show the
speed of this computation in our standard Python implementation, but
also with a C++ implementation that leverages this hardware support.

4 EXPERIMENTAL RESULTS

To illustrate the effectiveness of our approach, we use our generated bi-
nary representation in clustering applications. We experimented on five
datasets and refer to the dataset information in Section 4.1. In order to
evaluate the quality of the distance approximations of our approach, we

apply a distance-based single-linkage hierarchical clustering algorithm
by using the scikit-learn [56] Python library. It takes a distance matrix
as input, which contains all pairwise distances between histograms.
The objective of single-linkage hierarchical clustering is to produce
a nested sequence of partitions by successively merging clusters in a
bottom-up fashion until k clusters in total are reached.

For the datasets that have undefined k topological clusters, we use
the elbow method [72] to determine the number of clusters. For this we
deploy the hierarchical clustering for a sequential set of potential values
for k and then plot the total within-cluster sum of square distances
versus k (which measures the compactness of the clustering). The final
number k of clusters is then chosen by the elbow of the curve.

Results are evaluated against clustering results using the Wasserstein
distance. Test datasets are described in Section 4.1. Evaluation methods
are detailed in Section 4.2. Next, we describe how training can be
domain-oblivious in Section 4.3. Finally, performance and quality
results are reported in Section 4.4.

4.1 Datasets

We evaluated the clustering of five datasets that include 3D shapes,
ensemble simulation data, and 2D medical images.

3D Shape-1 [68]: This dataset contains 6 different 3D shape classes
including camels, horses, elephants, cats, human heads, and faces. We
created 200 persistence diagrams for each class using the implementa-
tion of Carrière et al. [14] to produce a Vietoris–Rips filtration. This
previous work showed that there were k = 2 distinct topological clusters
in this dataset. The average number of persistence points per diagram
is 63, ranging from 49 to 100. Fig. 5 shows example shapes and a
persistence diagram.

3D Shape-2 [15]: This dataset contains 3D shapes across 19 object
categories. 1,900 diagrams are produced in the same way as the previ-
ous dataset. The average number of persistence points per diagram on
this set is 22, ranging from 10 to 78. We use the elbow method [72] to
find that k = 7 clusters exist. See Fig. 6.

Vortex Street [76]: This ensemble dataset includes 45 examples of
a 2D simulation of flow turbulence behind an obstacle for k = 5 clusters
of different viscosity. The average number of persistence points in
this set is 22, ranging from 20 to 50. Diagrams are produced via
sublevel set filtration [76] using TTK [73]. Fig. 7 shows examples and
a representative persistence diagram.

Starting Vortex [76]: This ensemble dataset includes 12 examples
of a 2D simulation with the formation of a vortex behind a wing giving
k = 2 topological clusters. The average number of persistence points
of this set of persistence diagrams is 36 with 30 to 60 each. Diagrams
are produced similarly to the previous ensemble. See Fig. 8.

Colorectal Cancer [39]: This is a set of 10,000 regions of interest
images from hematoxylin & eosin (H&E) stained histological images
with 9 classes. The average number of persistence points in this set is
498, ranging from 78 to 802. We conduct experiments on the full dataset
and on a subset, since other approaches cannot run on the full data. The
subset contains 200 images per class and produces 1,800 persistence
diagrams in total with an average of 503 persistence points ranging
from 95 to 789. Diagrams are obtained via sublevel set filtration [44]
using the Giotto-tda library [70]. We use the elbow method [72] to
determine that there are k = 8 distinct topological clusters. See Fig. 1.

4.2 Evaluation of Clustering

Given a set of input persistence diagrams, P, our approach computes
a set B, of binary representations. To evaluate these binary represen-
tations, as well as other representations such as persistence images
and Betti curves, we compare their clustering performance against
clustering using Wasserstein distance. As it is considered the standard
distance for diagrams, we treat this distance as our ground truth. Let
C1 be the set of clusters obtained by performing hierarchical clustering
on P using Wasserstein. And let C2 be a set of clusters obtained by per-
forming hierarchical clustering on the set of vectorized representations
of the persistence diagrams with their associated distances (for example
B uses Hamming distance; Betti curves use Euclidean distance).



Table 2: Running times (in seconds) for the approaches outlined in this work to compute the distance matrix of the datasets with N diagrams with
average persistence points (Avg Pts). Wasserstein (W1), Hera, 2D histograms (HW), progressive Wasserstein (PW), persistence images (PI), Betti
Curves (BC), and our approach are provided. The speedup of our approach compared to the next fastest is also provided.

W1 Hera HW PW PI BC Ours Speedup

Dataset N Avg Pts Total Total Total Total Generate Distance Total Generate Distance Total Generate Distance Total

Colon Cancer 10,000 498 – – – – 162.21 1208.8 1371.01 76.36 1257.31 1333.67 135.88 119.08 254.96 5.2X

Colon Cancer-sub 1,800 503 >10D >7D >4D – 31.58 73.04 104.82 4.49 76.59 81.08 9.36 3.98 13.34 6.1X

3D Shape-1 1,200 63 78037.24 7523.12 1588.35 – 4.78 38.28 43.06 2.17 35.14 37.31 6.92 2.62 9.54 3.9X

3D Shape-2 1,900 22 15321.68 1832.94 633.52 – 6.48 67.4 73.88 3.13 67.69 70.92 8.1 3.9 12 5.9X

Vortex Street 45 14 15.26 9.76 0.63 0.09* 0.19 0.041 0.231 0.14 0.04 0.18 0.72 0.0033 0.72 -

Starting Vortex 12 36 9.27 1.23 0.14 0.18* 0.06 0.03 0.09 0.02 0.044 0.064 0.23 0.026 0.26 -

Table 3: Comparison of clustering results with different training sets
using Fowlkes-Mallows score, the Random-20 indicates we use a syn-
thetically random persistence diagram with 20 persistence points each
for training, 50 is with 50 persistence points and 100 is with 100 persis-
tence points.

FMS

Dataset N Avg Pts Model-20 Model-50 Model-100
3D Shape-2 1,900 22 0.97 0.96 0.62
3D Shape-1 1,200 63 0.77 0.83 0.67
Colon Cancer-sub 1,800 503 0.71 0.76 0.99

We compare these two clusterings C1 and C2 using the Fowlkes-
Mallows score (FMS) [26,51] to quantify the similarity of the clustering.
This is defined as the geometric mean of precision and recall:

FMS(C1,C2) =
T P√

(T P+FP)(T P+FN)
,

where T P (true positive) is the number of pairs of persistence diagrams
that belong to the same clusters in C1 and C2. FP (false positive) is
the number of such pairs that are in different clusters in C1, but in the
same cluster in C2. FN (false negative) is the number of such pairs that
are in the same cluster in C1, but in different clusters in C2. A FMS
value of 1 means a perfect match with the minimum value being 0. As
our experiments show in Section 4.4, our results are all close to 1. In
addition, multidimensional scaling (MDS) [9] plots are provided in Fig.
5-8 to visualize clustering results using Wasserstein and our approach.

4.3 Domain-Specific vs. Domain-Oblivious Training

Our first approach to training is the obvious one: we train on domain-
specific data to evaluate if our hash function can sufficiently preserve
this space. We evaluated our approach on the 3D shape-1 dataset,
splitting the 1,200 diagrams into training and test sets of size 900 and
300, respectively. Clustering with this trained model gave a FMS of
0.83 when compared to the ground-truth clustering using Wasserstein.
While this test shows that using domain-data is a viable strategy for our
approach, limiting training to domain-specific data would hinder its
applicability. As with all machine learning approaches the availability
of data is critical to build well-trained models. While datasets like
ensemble simulations may have enough data to train the model, this is
not guaranteed. Therefore, we evaluated a more general approach.

Ideally, training should be domain-oblivious, thereby removing the
need for plentiful domain data. To evaluate this possibility, we have
trained our model purely on synthetic data. We note that persistence
diagrams can be thought of as a specialized 2D scatter plot. Therefore
we can produce synthetic diagrams by creating random scatter plots
with a uniform persistence point distribution (rejecting points under the
diagonal). Training using this naive, synthetic data provided surprising
results. We trained our model with diagrams with 50 randomly dis-
tributed persistence points and clustered 3D shape-1. The synthetic data

produced the same FMS within 0.001 of clustering using the domain-
specific model. In our experiments, we found that the only requirement
for this approach is that the synthetic diagrams used in training should
each have a number of points close to the average number of persistence
points in the data to be clustered. This result is not only not obvious,
but one would automatically think the opposite: that a set of naive,
random diagrams would not sufficiently sample the space of potential
diagrams. Our experimental findings raise interesting questions on this
space that we discuss in Section 5.

We adopt this domain-oblivious approach as the primary method for
training in this work. We train three models for evaluation: Model-20,
Model-50, and Model-100 with 4000 diagrams each with 20, 50, and
100 persistence points per diagram respectively. Table 3 illustrates the
requirement described above where matching the number of persistence
points in training diagrams to the average number of points in the
clustered data leads to higher quality results. In our experiments, 3D
shape-2 and Vortex Street were tested with Model-20. Next, 3D shape-1
and Starting Vortex were tested with Model-50. Finally, both the full
Colorectal Cancer dataset and its subset were tested using Model-100.
Note the cross-domain applicability of these models.

4.4 Results

All of our experiments were made on Intel Core 3.60GHz × 8 cores
(CPU) and Nvidia GeForce GTX 1660 (the GPU was only used for
training models) with 32GB of RAM. Our method is implemented
in Python with the Tensorflow platform using the implementation2

of Song et al. [66] for our training architecture. We also provide a
lightweight C++ program for hardware-accelerated Hamming distance
computation. Our code and data are available in an OSF repository.3

We compare the running time and memory usage of our approach
with two popular vectorized persistence representations: Persistence
Images (PI) [1] and Betti Curves (BC) [27, 60] using GUDHI [71].
In addition, we evaluate our approach against two state-of-the-art ap-
proximations of Wasserstein distance: 2D histograms with Optimal
Transport (HW) [43] and Progressive Wasserstein (PW) [76] with their
implementations. As a ground truth we compare against Wasserstein
distance (W1) [18] using scikit-tda [61] and a fast implementation of
W1, the Hera method [40] using GUDHI [71], following the common
parameter values for the above. We use a PI bandwidth of h = 0.02
with the standard weight function (1/persistence) and the entropic term
for HW is 0.1/avgN

i=1|pi|. The grid resolution for all is 50× 50 and
bounded by the min/max coordinate of the diagram. This resolution was
determined through experimental evaluation of the range [102,1002]
with a step-size of 1. We found in our testing of 3D shape-1, that
sizes over 50 only provided minimal improvement of the FMS (ap-
proximately 0.001). Therefore 50 was chosen as the minimum sized
representation that still provides good quality results. The PI bandwidth
was also determined experimentally by testing the range [0.001,1.0]
with step size 0.001.

2https://github.com/ht014/BGAN
3https://osf.io/q58c3/

https://github.com/ht014/BGAN
https://osf.io/q58c3/
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152.96 MB
30.5 minutes - 4.3 hours
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120 KB
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Fig. 6: 3D shape-2 dataset: (a) Example shape meshes from the dataset
and (b) one diagram example. As this dataset does not have a known
amount of topologically distinct clusters, we use (c) the elbow method
to find that k = 7 clusters exist with respect to the Wasserstein distance.
(d) and (e) illustrate the MDS plots for Wasserstein distance and for
Hamming distance for our generated binary codes, respectively. The
FMS of 0.97 indicates that our method almost perfectly matches the
original clusters.

4.4.1 Speed

Table 2 details our full comparison of runtimes to compute the distance
matrix for all pairs in each dataset. This is the input to single-linkage
clustering and is therefore the only point at which each technique
differs. We separately list the time to generate all representations (e.g.,
compute persistence images, compute our binary code representation,
etc.) and to compute the pairwise distances. W1, Hera, and PW have no
generation time, and the generation time for HW is nominal compared
to the costly distance computation; therefore these times are presented
as total runtimes only. Runtimes for PW are provided but marked
with an asterisk since direct comparison is not possible. They use
a fast C++ implementation (compared to our Python) and compute
distances while clustering. Therefore the distance calculation cannot be
separated. Parallelism was allowed for generation of the vectorizations,
but distances were computed serially. This was chosen to highlight
and simplify the runtime comparisons. As the distance computation is
embarrassingly parallel, all approaches should be parallelizable with
similar comparisons.

Let us first consider the runtimes for W1, Hera, and HW. As this
table illustrates, these approaches are prohibitively slow. In fact, it was
not feasible to run them on our largest dataset with 10k diagrams. For
a fair comparison to our Python distance calculation, we do not run
HW using GPU acceleration. We note that Latombe et al. [43] showed

(b)

(c) (d)

(a)

46 KB
9.76-15.26 seconds

0.81 FMS
770 bytes

0.72 seconds

Fig. 7: Vortex Street: This dataset contains k = 5 clusters with (a)
showing the representative data for each cluster. (b) An example di-
agram is provided. The MDS plot for this dataset is provided for (c)
the Wasserstein distance and (d) the Hamming distance of our binary
codes.

that HW still takes roughly 40− 80 minutes for k-means clustering
even with GPU acceleration on 5k persistence diagrams with 50−100
persistence points. Next we evaluated the PW approach. This is a
progressive approach, and for a fair comparison we ran it to completion.
As the table illustrates, this approach is extremely fast for the small test
datasets. Although in our testing the author’s implementation of this
approach quickly reached the memory limits of our system (32 GB)
and therefore did not scale to our larger datasets (Colorectal Cancer,
3D shape-1 and 3D shape-2). We ran PW on a 50 image subset of the
Colon Cancer dataset and it took over an hour.

Comparing to other vectorized approaches, our method offers signifi-
cant performance improvements for our larger datasets giving speedups
of 3.9X ∼ 6.1X when compared to the fastest alternative approach. As
the table shows, our distance computation is incredibly fast leaving the
bottleneck of our approach to be the generation of the binary codes. As
such, for datasets that are small, where distance computation does not
dominate, our runtimes are comparable to other vectorized approaches.

As a final illustration of the speed, we have implemented the distance
calculation of our approach in C++ and leverage the population count
and XOR support that exists on modern CPUs. These results are
provided for our largest datasets in Table 4. The runtimes are 2-3 orders
of magnitude faster than our Python implementation and take all-pairs
distance computation down to just milliseconds. Overall, these results
show the speed and scalability of our proposed method and how well
positioned our binary codes would be for large-scale tasks or databases.

Table 4: Timings for comparisons using a C++ implementation that
leverages hardware acceleration to compute Hamming distances.

Dataset N Python C++ Speedup
Colon Cancer 10,000 119.08s 161.61ms 737X
3D Shape-1 1,200 2.62s 2.27ms 1154X
3D Shape-2 1,900 3.9s 5.32ms 733X
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19 KB
1.23-9.27 seconds

1.0 FMS
20 bytes

0.26 seconds

Fig. 8: Starting Vortex: (a) This ensemble set contains 2 clusters. (b)
An example persistence diagram is provided. (c) and (d) The FMS of
1.0 shows that our method achieves a perfect matching among clusters
compared to clustering using Wasserstein.

4.4.2 Memory and Storage

Table 5 describes the potential memory and storage gains from our
representation. The 2D persistence points of the diagrams (PD) were
saved using 64-bit precision. The grids for PI/BC were also saved with
64-bit precision. We compare this requirement to our approach that
saves a single 64-bit number. Reduction rate is compared to the next
smallest representation. As this table illustrates, as one would expect,
saving a single integer can have significant benefits for storage and
memory. The encoder size for our approach, which would also have
to be saved, is not included in these results. This cost can vary. Our
encoder for this work was the same as Song et al. [66]: a standard, pre-
trained VGG19 [69] model, which is approximately 500MB. However,
it may be possible to compress this size [17] . For instance, work has
shown VGG19 can reduce its parameters 5−20X [50]. Other models
like SqueezeNet [36] reduce to less than 0.5MB. Overall, since our
approach is domain-oblivious, a single model can be potentially used
on a multitude of datasets from a large number of domains. Thus the
cost of storing the encoder would be amortized in practice and will not
grow as data sizes increase. Therefore this approach has the potential
to greatly reduce storage overheads as the use of TDA grows.

Table 5: Comparison of size (in MB) with persistence summaries. As
vectorized summaries of persistence diagrams, here PI and BC have
the same vector size (50x50).

Dataset N Avg Pts PD PI/BC Ours (64bits) Reduction

Colon Cancer 10,000 498 800.96 201.21 0.64 192X

Colon Cancer-sub 1,800 503 144.96 36.2 0.12 254X

3D Shape-1 1,200 63 130.12 24.13 0.08 301X

3D Shape-2 1,900 22 152.96 36.2 0.12 301X

Vortex Street 45 14 0.046 0.9 0.00077 1168X

Starting Vortex 12 36 0.019 0.24 0.00002 1200X

4.4.3 Quality
Table 6 shows the evaluation of clustering quality, comparing our clus-
tering results with other methods using the evaluation method described
in Section 4.2. The quality is determined by the FMS between the clus-
terings obtained for the different persistence diagram representations
compared to the clustering produced when using Wasserstein distance
directly on the persistence diagrams. As such, we could only run com-
parisons on a 1,800 diagram subset of the colorectal cancer dataset
since running the full dataset was not possible (W1, Hera) or failed
(PW) for some approaches. For our approach, we provide the FMS for
our two methods for forming a similarity matrix: real-valued or binary
similarity. As this table illustrates, our approach provides comparable
or better quality results when compared to progressive Wasserstein
(PW), persistence images (PI), or Betti Curves (BC). We time-limit PW
to the total runtime of our approach as reported in Table 2. PW would,
in time, converge to the exact Wasserstein distance. Therefore for a
fair comparison, we only look at their quality for the same amount of
running time. Not only are the results from the binary codes on par with
other approaches, our approach almost achieves perfect reproduction
of the clustering for the Colorectal Cancer and 3D Shape-2 datasets.
Moreover, it perfectly matches the clustering of Starting Vortex. Note
these results use our domain-oblivious training approach and therefore
the same models were applied to more than one type of data.

Table 6: Comparison of clustering results using the Fowlkes-Mallows
score, as described in Section 4.2. Scores range from 0 to 1; a score
of 1 indicates identical clusters. The clusterings using different persis-
tence diagram representations (and their distances) are compared to the
Wasserstein-based clustering of the input persistence diagrams.

Ours

Dataset Avg Pts PW PI BC Model Real Bin
Colon-sub 503 0.71 0.98 0.99 100 0.92 0.99
3D Shape-1 63 0.54 0.8 0.81 50 0.82 0.83
3D Shape-2 22 0.74 0.97 0.96 20 0.91 0.97
Vortex Street 14 1 0.79 0.78 20 0.80 0.81
Starting Vortex 36 1 1 1 50 0.63 1

Table 7: Comparison of clustering results with different number of bits,
using the Fowlkes-Mallows score.

Dataset N Avg Pts 24 bits 48 bits 64 bits 128 bits 256 bits
3D Shape-1 1,200 63 0.64 0.75 0.83 0.84 0.86
3D Shape-2 1,900 22 0.82 0.89 0.97 0.97 0.98
Vortex Street 45 14 0.67 0.77 0.81 0.83 0.86
Starting Vortex 12 36 0.94 1 1 1 1

To further evaluate the quality of distance preservation using our
binary codes, we provide scatterplots in Fig. 9 by setting Wasserstein
and Hamming distance as x-y coordinates for each point pair. To avoid
overdrawing, each point is drawn as a Gaussian kernel density estimator.
Each point in the plot is a diagram with the horizontal position given by
the W1 distance and vertical being the Hamming distance. If distances
are being maintained, this plot should be linear about a diagonal. As
this figure illustrates, this is the case for our binary codes. In Fig. 9
(a) the points are provided as well (yellow). This shows there is clear
separation in both dimensions (dotted line) meaning that these clusters
are well-maintained in both distances. Finally, Fig. 9 (b) illustrates the
plot for Vortex Street, an example with a lower FMS. As highlighted
with red arrows, there are clear clusters of points where distance is not
being maintained and likely give the lower score (although still higher
quality than PI and BC).

Next, we evaluate quality in FMS in relation to the number of bits
used in the binary code. We experimented with the clustering result of
3D shape-1, 3D shape-2, Vortex Street, and Starting Vortex by varying
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Fig. 9: (a-d) Plots to illustrate distance preservation using binary codes
for various datasets. Each is a scatterplot of points for each diagram
whose horizontal position is W1 distance and vertical is Hamming.
Each is drawn with a kernel density estimator. All exhibit a linear,
diagonal shape meaning that distances are being preserved. (a) also
plots the points directly (yellow). There is a clear separation of the two
clusters both horizontally and vertically. (b) highlights the two areas
that break this linear property that likely give its lower FMS.

bit lengths from 24-256. The results of this experiment are provided
in Table 7. As this table shows, and as one would expect, increases
in bit length result in increases in quality of the final result, although
with a noticeable falloff in gains after 64 bits. Therefore we opted
for 64-bit codes since they provide high-quality results with simpler
implementations than the higher bit counts.

Table 8 illustrates a FMS comparison of clustering the 3D Shape-1
dataset with different similarity matrix strategies. In this table, Real
denotes the real-valued similarity matrix. S-X denotes the use of a
binary similarity matrix built from the real-valued distance matrix. S-1
uses fixed number of k-nearest neighbors, where k = 1000 out of the
4000 training set. Similarly, S-2 uses k = 600 and S-3 uses k = 1400.
For a soft threshold similarity matrix, S-4 uses a strategy of limiting
similarity to use a global threshold of 25% percent. Finally, S-5 is
our two pass mean rejection. As this figure illustrates, the two pass
approach leads to more accurate clustering and is therefore used by our
work.

Table 8: Comparison of clustering results with different similarity
matrix computation methods, using the Fowlkes-Mallows score.

Trained Model N Avg Pts Real S-1 S-2 S-3 S-4 S-5
Model-50 4,000 50 0.82 0.77 0.78 0.8 0.81 0.83

5 CONCLUSIONS

In the paper, we present an approach to produce concise binary codes
of persistence diagrams that maintain topological similarity. The key to
this approach is the training of a machine learning model that learns
a hash, not on domain-specific data, but on randomly generated 2D
scatter plots. This leads to a technique that is domain-oblivious, where
a model can be applied across multiple domains or types of data without
the need for retraining. As this is a hashing approach, our technique
is not likely to maintain small distances. For applications where close
distances are discounted, our approach is well-suited. It is still an
open question if a hashing approach could be designed such that small

distances are maintained. The data used in our synthetically trained
model only needs to roughly match the average number of persistence
points of the testing dataset. In practice, we have found this is not an
overly strict requirement. For instance, the Colorectral Cancer dataset
has 500 persistence points on average, but Model-100 worked well
in our tests. In regards to storage, while our binary code is small,
one would still need to save the encoder, which for deep networks
can be many MB. As we mentioned, given that a single model can
be applied to many datasets across many domains, we argue that the
amortized cost could be nominal in practice. Although, we plan to
explore how to reduce this overhead in future work. Finally, this
work illustrated the benefits of this representation through examples
from topological clustering, where our new binary codes provide fast,
high-quality results. Moreover, the scalability of such an approach
was highlighted through the potential low storage requirements of the
binary codes along with extremely fast distance computations using
on-chip acceleration.
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[65] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen,
T. Du, and L. Guibas. Convolutional Wasserstein distances: Efficient
optimal transportation on geometric domains. ACM Transactions on
Graphics (TOG), 34(4):1–11, 2015.

[66] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen. Binary
generative adversarial networks for image retrieval. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[67] J. Song, T. He, L. Gao, X. Xu, and H. T. Shen. Deep region hashing
for generic instance search from images. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, 2018.
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